Conversion of the Tetrameric Restriction Endonuclease Bse634I into a Dimer: Oligomeric Structure–Stability–Function Correlations

2005 ◽  
Vol 348 (2) ◽  
pp. 459-478 ◽  
Author(s):  
M. Zaremba ◽  
G. Sasnauskas ◽  
C. Urbanke ◽  
V. Siksnys
ACS Nano ◽  
2018 ◽  
Vol 12 (10) ◽  
pp. 9855-9865 ◽  
Author(s):  
Tiago N. Figueira ◽  
Diogo A. Mendonça ◽  
Diana Gaspar ◽  
Manuel N. Melo ◽  
Anne Moscona ◽  
...  

2003 ◽  
Vol 26 (7) ◽  
pp. 360-368 ◽  
Author(s):  
Haruo Kasai ◽  
Masanori Matsuzaki ◽  
Jun Noguchi ◽  
Nobuaki Yasumatsu ◽  
Hiroyuki Nakahara

Cell ◽  
2021 ◽  
Vol 184 (19) ◽  
pp. 4857-4873
Author(s):  
Michael R. Sawaya ◽  
Michael P. Hughes ◽  
Jose A. Rodriguez ◽  
Roland Riek ◽  
David S. Eisenberg

Author(s):  
Mark Hannibal ◽  
Jacob Varkey ◽  
Michael Beer

Workman and Langmore have recently proposed a procedure for isolating particular chromatin fragments. The method requires restriction endonuclease cutting of the chromatin and a probe, their digestion with two exonucleases which leave complimentary single strand termini and low temperature hybridization of these. We here report simple electron microscopic monitoring of the four reactions involved.Our test material was ϕX-174 RF DNA which is cut once by restriction endonuclease Xho I. The conversion of circles to linear molecules was followed in Kleinschmidt spreads. Plate I shows a circular and a linear DNA molecule. The rate of cutting is shown in Figure 1.After completion of the endonuclease cutting, one portion of the DNA was treated with exonuclease III, an enzyme known to digest the 3' terminals of double helical DNA. Aliquots when examined in the electron microscope reveal a decreasing length of double helix and increasing bushes at the ends.


Author(s):  
Dwight Anderson ◽  
Charlene Peterson ◽  
Gursaran Notani ◽  
Bernard Reilly

The protein product of cistron 3 of Bacillus subtilis bacteriophage Ø29 is essential for viral DNA synthesis and is covalently bound to the 5’-termini of the Ø29 DNA. When the DNA-protein complex is cleaved with a restriction endonuclease, the protein is bound to the two terminal fragments. The 28,000 dalton protein can be visualized by electron microscopy as a small dot and often is seen only when two ends are in apposition as in multimers or in glutaraldehyde-fixed aggregates. We sought to improve the visibility of these small proteins by use of antibody labeling.


2018 ◽  
Vol 34 (3) ◽  
pp. 206-215 ◽  
Author(s):  
Rahel Bachem ◽  
Andreas Maercker

Abstract. The present study introduces a revised Sense of Coherence (SOC) scale, a new conceptualization and operationalization of the resilience indicator SOC. It outlines the scale development and aims for testing its reliability, factor structure, and validity. Literature on Antonovsky’s SOC (SOC-A) was critically reviewed to identify needs for improving the scale. The scale was investigated in two samples. Sample 1 consisted of 334 bereaved participants, Sample 2 of 157 healthy controls. The revised SOC Scale, SOC-A, and theoretically relevant questionnaires were applied. Explorative and confirmatory factor analyses established a three-factor structure in both samples. The revised SOC Scale showed significant but discriminative associations with related constructs, including self-efficacy, posttraumatic growth, and neuroticism. The revised measure was significantly associated with psychological health indicators, including persistent grief, depression, and anxiety, but not to the extent as the previous SOC-A. Stability over time was sufficient. The study provides psychometric support for the revised SOC conceptualization and scale. It has several advantages over the previous SOC-A scale (unique variance, distinct factor structure, stability). The scale could be used for clinical and health psychological testing or research into the growing field of studies on resilience over the life span.


2019 ◽  
Author(s):  
Jose Julio Gutierrez Moreno ◽  
Marco Fronzi ◽  
Pierre Lovera ◽  
alan O'Riordan ◽  
Mike J Ford ◽  
...  

<p></p><p>Interfacial metal-oxide systems with ultrathin oxide layers are of high interest for their use in catalysis. In this study, we present a density functional theory (DFT) investigation of the structure of ultrathin rutile layers (one and two TiO<sub>2</sub> layers) supported on TiN and the stability of water on these interfacial structures. The rutile layers are stabilized on the TiN surface through the formation of interfacial Ti–O bonds. Charge transfer from the TiN substrate leads to the formation of reduced Ti<sup>3+</sup> cations in TiO<sub>2.</sub> The structure of the one-layer oxide slab is strongly distorted at the interface, while the thicker TiO<sub>2</sub> layer preserves the rutile structure. The energy cost for the formation of a single O vacancy in the one-layer oxide slab is only 0.5 eV with respect to the ideal interface. For the two-layer oxide slab, the introduction of several vacancies in an already non-stoichiometric system becomes progressively more favourable, which indicates the stability of the highly non-stoichiometric interfaces. Isolated water molecules dissociate when adsorbed at the TiO<sub>2</sub> layers. At higher coverages the preference is for molecular water adsorption. Our ab initio thermodynamics calculations show the fully water covered stoichiometric models as the most stable structure at typical ambient conditions. Interfacial models with multiple vacancies are most stable at low (reducing) oxygen chemical potential values. A water monolayer adsorbs dissociatively on the highly distorted 2-layer TiO<sub>1.75</sub>-TiN interface, where the Ti<sup>3+</sup> states lying above the top of the valence band contribute to a significant reduction of the energy gap compared to the stoichiometric TiO<sub>2</sub>-TiN model. Our results provide a guide for the design of novel interfacial systems containing ultrathin TiO<sub>2</sub> with potential application as photocatalytic water splitting devices.</p><p></p>


Sign in / Sign up

Export Citation Format

Share Document