Human Intestinal Maltase–Glucoamylase: Crystal Structure of the N-Terminal Catalytic Subunit and Basis of Inhibition and Substrate Specificity

2008 ◽  
Vol 375 (3) ◽  
pp. 782-792 ◽  
Author(s):  
Lyann Sim ◽  
Roberto Quezada-Calvillo ◽  
Erwin E. Sterchi ◽  
Buford L. Nichols ◽  
David R. Rose
2017 ◽  
Author(s):  
Inna Rozman Grinberg ◽  
Daniel Lundin ◽  
Mahmudul Hasan ◽  
Mikael Crona ◽  
Venkateswara Rao Jonna ◽  
...  

AbstractRibonucleotide reductases (RNRs) are key enzymes in DNA synthesis and repair, with sophisticated allosteric mechanisms controlling both substrate specificity and overall activity. In RNRs, the activity master-switch, the ATP-cone, has been found exclusively in the catalytic subunit. In two class I RNR subclasses whose catalytic subunit lacks the ATP-cone, we discovered ATP-cones in the radical-generating subunit. The ATP-cone in the Leewenhoekiella blandensis radical-generating subunit regulates activity via modifications of quaternary structure induced by binding of nucleotides. ATP induces enzymatically competent dimers, whereas dATP induces non-productive tetramers, resulting in different holoenzyme complexes. The tetramer forms solely by interactions between ATP-cones, as evidenced by a 2.45 Å crystal structure. We also present evidence for an MnIIIMnIV metal center. In summary, lack of an ATP-cone domain in the catalytic subunit was compensated by evolutionary capture of the domain by the radical-generating subunit. Our findings present a novel opportunity for dATP-regulation of engineered proteins.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Inna Rozman Grinberg ◽  
Daniel Lundin ◽  
Mahmudul Hasan ◽  
Mikael Crona ◽  
Venkateswara Rao Jonna ◽  
...  

Ribonucleotide reductases (RNRs) are key enzymes in DNA metabolism, with allosteric mechanisms controlling substrate specificity and overall activity. In RNRs, the activity master-switch, the ATP-cone, has been found exclusively in the catalytic subunit. In two class I RNR subclasses whose catalytic subunit lacks the ATP-cone, we discovered ATP-cones in the radical-generating subunit. The ATP-cone in the Leeuwenhoekiella blandensis radical-generating subunit regulates activity via quaternary structure induced by binding of nucleotides. ATP induces enzymatically competent dimers, whereas dATP induces non-productive tetramers, resulting in different holoenzymes. The tetramer forms by interactions between ATP-cones, shown by a 2.45 Å crystal structure. We also present evidence for an MnIIIMnIV metal center. In summary, lack of an ATP-cone domain in the catalytic subunit was compensated by transfer of the domain to the radical-generating subunit. To our knowledge, this represents the first observation of transfer of an allosteric domain between components of the same enzyme complex.


2016 ◽  
Vol 291 (46) ◽  
pp. 24054-24064 ◽  
Author(s):  
Alexei Gorelik ◽  
Leonhard X. Heinz ◽  
Katalin Illes ◽  
Giulio Superti-Furga ◽  
Bhushan Nagar

2022 ◽  
Author(s):  
Jai Krishna Mahto ◽  
Neetu Neetu ◽  
Monica Sharma ◽  
Monika Dubey ◽  
Bhanu Prakash Vellanki ◽  
...  

Biodegradation of terephthalate (TPA) is a highly desired catabolic process for the bacterial utilization of this Polyethylene terephthalate (PET) depolymerization product, but to date, the structure of terephthalate dioxygenase (TPDO), a Rieske oxygenase (RO) that catalyzes the dihydroxylation of TPA to a cis -diol is unavailable. In this study, we characterized the steady-state kinetics and first crystal structure of TPDO from Comamonas testosteroni KF1 (TPDO KF1 ). The TPDO KF1 exhibited the substrate specificity for TPA ( k cat / K m = 57 ± 9 mM −1 s −1 ). The TPDO KF1 structure harbors characteristics RO features as well as a unique catalytic domain that rationalizes the enzyme’s function. The docking and mutagenesis studies reveal that its substrate specificity to TPA is mediated by Arg309 and Arg390 residues, two residues positioned on opposite faces of the active site. Additionally, residue Gln300 is also proven to be crucial for the activity, its substitution to alanine decreases the activity ( k cat ) by 80%. Together, this study delineates the structural features that dictate the substrate recognition and specificity of TPDO. Importance The global plastic pollution has become the most pressing environmental issue. Recent studies on enzymes depolymerizing polyethylene terephthalate plastic into terephthalate (TPA) show some potential in tackling this. Microbial utilization of this released product, TPA is an emerging and promising strategy for waste-to-value creation. Research from the last decade has discovered terephthalate dioxygenase (TPDO), as being responsible for initiating the enzymatic degradation of TPA in a few Gram-negative and Gram-positive bacteria. Here, we have determined the crystal structure of TPDO from Comamonas testosteroni KF1 and revealed that it possesses a unique catalytic domain featuring two basic residues in the active site to recognize TPA. Biochemical and mutagenesis studies demonstrated the crucial residues responsible for the substrate specificity of this enzyme.


2017 ◽  
Vol 474 (20) ◽  
pp. 3373-3389 ◽  
Author(s):  
Dong-Dong Meng ◽  
Xi Liu ◽  
Sheng Dong ◽  
Ye-Fei Wang ◽  
Xiao-Qing Ma ◽  
...  

Glycoside hydrolase (GH) family 5 is one of the largest GH families with various GH activities including lichenase, but the structural basis of the GH5 lichenase activity is still unknown. A novel thermostable lichenase F32EG5 belonging to GH5 was identified from an extremely thermophilic bacterium Caldicellulosiruptor sp. F32. F32EG5 is a bi-functional cellulose and a lichenan-degrading enzyme, and exhibited a high activity on β-1,3-1,4-glucan but side activity on cellulose. Thin-layer chromatography and NMR analyses indicated that F32EG5 cleaved the β-1,4 linkage or the β-1,3 linkage while a 4-O-substitued glucose residue linked to a glucose residue through a β-1,3 linkage, which is completely different from extensively studied GH16 lichenase that catalyses strict endo-hydrolysis of the β-1,4-glycosidic linkage adjacent to a 3-O-substitued glucose residue in the mixed-linked β-glucans. The crystal structure of F32EG5 was determined to 2.8 Å resolution, and the crystal structure of the complex of F32EG5 E193Q mutant and cellotetraose was determined to 1.7 Å resolution, which revealed that the exit subsites of substrate-binding sites contribute to both thermostability and substrate specificity of F32EG5. The sugar chain showed a sharp bend in the complex structure, suggesting that a substrate cleft fitting to the bent sugar chains in lichenan is a common feature of GH5 lichenases. The mechanism of thermostability and substrate selectivity of F32EG5 was further demonstrated by molecular dynamics simulation and site-directed mutagenesis. These results provide biochemical and structural insights into thermostability and substrate selectivity of GH5 lichenases, which have potential in industrial processes.


Biochemistry ◽  
1993 ◽  
Vol 32 (9) ◽  
pp. 2154-2161 ◽  
Author(s):  
Jianhua Zheng ◽  
Daniel R. Knighton ◽  
Lynn F. Ten Eyck ◽  
Rolf Karlsson ◽  
N. Xuong ◽  
...  

FEBS Journal ◽  
2009 ◽  
Vol 276 (18) ◽  
pp. 5094-5100 ◽  
Author(s):  
Katsuro Yaoi ◽  
Hidemasa Kondo ◽  
Ayako Hiyoshi ◽  
Natsuko Noro ◽  
Hiroshi Sugimoto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document