Reengineering Cro Protein Functional Specificity with an Evolutionary Code

2011 ◽  
Vol 413 (5) ◽  
pp. 914-928 ◽  
Author(s):  
Branwen M. Hall ◽  
Erin E. Vaughn ◽  
Adrian R. Begaye ◽  
Matthew H.J. Cordes
2021 ◽  
Vol 22 (12) ◽  
pp. 6613
Author(s):  
Fernando C. Baltanás ◽  
Rósula García-Navas ◽  
Eugenio Santos

The SOS family of Ras-GEFs encompasses two highly homologous and widely expressed members, SOS1 and SOS2. Despite their similar structures and expression patterns, early studies of constitutive KO mice showing that SOS1-KO mutants were embryonic lethal while SOS2-KO mice were viable led to initially viewing SOS1 as the main Ras-GEF linking external stimuli to downstream RAS signaling, while obviating the functional significance of SOS2. Subsequently, different genetic and/or pharmacological ablation tools defined more precisely the functional specificity/redundancy of the SOS1/2 GEFs. Interestingly, the defective phenotypes observed in concomitantly ablated SOS1/2-DKO contexts are frequently much stronger than in single SOS1-KO scenarios and undetectable in single SOS2-KO cells, demonstrating functional redundancy between them and suggesting an ancillary role of SOS2 in the absence of SOS1. Preferential SOS1 role was also demonstrated in different RASopathies and tumors. Conversely, specific SOS2 functions, including a critical role in regulation of the RAS–PI3K/AKT signaling axis in keratinocytes and KRAS-driven tumor lines or in control of epidermal stem cell homeostasis, were also reported. Specific SOS2 mutations were also identified in some RASopathies and cancer forms. The relevance/specificity of the newly uncovered functional roles suggests that SOS2 should join SOS1 for consideration as a relevant biomarker/therapy target.


Reproduction ◽  
2005 ◽  
Vol 130 (3) ◽  
pp. 275-281 ◽  
Author(s):  
Sabine Costagliola ◽  
Eneko Urizar ◽  
Fernando Mendive ◽  
Gilbert Vassart

The dichotomy between hormone recognition by the ectodomain and activation of the G protein by the rhodopsin-like serpentine portion is a well established property of glycoprotein hormone receptors. The specificity barrier avoiding promiscuous activation of the FSH receptor by the high concentration of human chorionic gonadotropin (hCG) prevailing during human pregnancy was thus believed to lie in the ectodomain. In the past two years, mutations responsible for rare spontaneous cases of ovarian hyperstimulation syndromes have partially modified this simple view. Five naturally occurring mutations have been identified which cause an increase in the sensitivity of the FSH receptor to hCG. Surprisingly, these mutations are all located in the serpentine portion of the receptor. In addition to their effect on sensitivity to hCG, they increase sensitivity of the FSH receptor to TSH, and are responsible for activating the receptor constitutively. Together, the available information indicates that the ectodomain and the serpentine domain of the FSH receptor each contribute to the specificity barrier preventing its spurious activation by hCG. While the former is responsible for establishment of binding specificity, the latter introduces a novel notion of functional specificity.Recent data demonstrate that LH and FSH receptors can constitute functional homo- and heterodimers. This suggests the possibility that in cells co-expressing the two receptors, such as granulosa cells, the heterodimers might be endowed with functional characteristics different from those of each homodimer.


2002 ◽  
Vol 99 (9) ◽  
pp. 5860-5865 ◽  
Author(s):  
Y. Wang ◽  
C. L. Liu ◽  
J. D. Storey ◽  
R. J. Tibshirani ◽  
D. Herschlag ◽  
...  

2011 ◽  
Vol 16 (2) ◽  
pp. 357-358
Author(s):  
Bruno M. Fonseca ◽  
Ivo H. Saraiva ◽  
Catarina M. Paquete ◽  
Claudio M. Soares ◽  
Isabel Pacheco ◽  
...  

Development ◽  
1980 ◽  
Vol 55 (1) ◽  
pp. 343-354
Author(s):  
J. R. Whittaker

This research shows that myoplasmic crescent material of the ascidian egg has both functional autonomy and functional specificity in establishing the differentiation pathway of muscle lineage cells. The cytoplasmic segregation pattern in eggs of Styela plicata was altered by compression of the embryos during third cleavage. This caused a meridional division instead of the normal equatorial third cleavage; first and second cleavages are meridional. Since eggs of S. plicata have a pronounced yellow myoplasmic crescent, one observes directly that third cleavage under compression resulted in a flat 8-cell stage with four cells containing yellow myoplasm instead of the two myoplasm-containing cells that would be formed by normal equatorial division at third cleavage. If such altered 8-cell-stage embryos were released from compression and kept from undergoing further divisions by continuous treatment with cytochalasin B, some embryos eventually developed histospecific acetylcholinesterase in three and four cells instead of in just the two muscle lineage cells found in cleavage-arrested normal 8-cell stages. The wider myoplasmic distribution effected by altering the division plane at third cleavage apparently caused a change in developmental fate of the extra cells receiving myoplasm. This meridional third cleavage also resulted in a changed nuclear lineage pattern. Two nuclei that would ordinarily be in ectodermal lineage cells after third cleavage were now associated with yellow myoplasm. Acetylcholinesterase development in these cells demonstrates that nuclear lineages are not responsible for muscle acetylcholinesterase development in the ascidian embryo.


Sign in / Sign up

Export Citation Format

Share Document