scholarly journals Working memory capacity mediates the relationship between removal and fluid intelligence

2018 ◽  
Vol 101 ◽  
pp. 18-36 ◽  
Author(s):  
Krishneil A. Singh ◽  
Gilles E. Gignac ◽  
Christopher R. Brydges ◽  
Ullrich K.H. Ecker
2021 ◽  
Author(s):  
Alexander P. Burgoyne ◽  
Cody Mashburn ◽  
Jason S. Tsukahara ◽  
Zach Hambrick ◽  
Randall W Engle

A hallmark of intelligent behavior is rationality—the disposition and ability to think analytically to make decisions that maximize expected utility or follow the laws of probability, and therefore align with normative principles of decision making. However, the question remains as to whether rationality and intelligence are empirically distinct, as does the question of what cognitive mechanisms underlie individual differences in rationality. In a large sample of participants (N = 331), we used latent variable analyses to assess the relationship between rationality and intelligence. The results indicated that there was a common ability underpinning performance on some, but not all, rationality tests. Latent factors representing rationality and general intelligence were strongly correlated (r = .54), but their correlation fell well short of unity. Indeed, after accounting for variance in performance attributable to general intelligence, rationality measures still cohered on a latent factor. Confirmatory factor analysis indicated that rationality correlated significantly with fluid intelligence (r = .56), working memory capacity (r = .44), and attention control (r = .49). Structural equation modeling revealed that attention control fully accounted for the relationship between working memory capacity and rationality, and partially accounted for the relationship between fluid intelligence and rationality. Results are interpreted in light of the executive attention framework, which holds that attention control supports information maintenance and disengagement in service of complex cognition. We conclude by speculating about factors rationality tests may tap that other cognitive ability tests miss, and outline directions for further research.


2020 ◽  
pp. 175-211
Author(s):  
Cody A. Mashburn ◽  
Jason S. Tsukahara ◽  
Randall W. Engle

This chapter outlines the executive attention theory of higher-order cognition, which argues that individual differences in the ability to maintain information in working memory and disengage from irrelevant information is inextricably linked to variation in the ability to deploy domain-free attentional resources in a goal-directed fashion. It also summarizes recent addendums to the theory, particularly regarding the relationship between attention control, working memory capacity, and fluid intelligence. Specifically, the chapter argues that working memory capacity and fluid intelligence measures require different allocations of the same attentional resources, a fact which accounts for their strong correlation. At various points, it addresses theoretical alternatives to the executive attention theory of working memory capacity and empirical complications of the study of attention control, including difficulties deriving coherent attention control latent factors.


2010 ◽  
Vol 17 (5) ◽  
pp. 673-679 ◽  
Author(s):  
Keisuke Fukuda ◽  
Edward Vogel ◽  
Ulrich Mayr ◽  
Edward Awh

2018 ◽  
Author(s):  
Kris Singh ◽  
Gilles Gignac ◽  
Christopher Brydges ◽  
Ullrich K. H. Ecker

A process of active, item-wise removal of information from working memory (WM) has been proposed as the core component process of WM updating. Consequently, we investigated the associations between removal efficiency, WM capacity, and fluid intelligence (gF) in a series of three individual-differences studies via confirmatory factor analysis. In each study, participants completed a novel WM updating task battery designed to measure removal efficiency. In Study 1, participants additionally completed a WM capacity task battery. In Study 2, participants completed a battery of well-established measures of gF in addition to the updating battery. In Study 3, participants completed the updating, WM capacity, and gF task batteries. The results suggested that removal efficiency was related to both WM capacity and gF. Furthermore, based on a mediation analysis, the relationship between removal efficiency and gF was found to be entirely indirect via removal’s influence on WM capacity. The results were interpreted to suggest that removal ability may contribute to performance in reasoning tasks effectively through increasing WM capacity, presumably through reducing interference from distracting information.


2021 ◽  
Vol 9 (2) ◽  
pp. 21
Author(s):  
Tengfei Wang ◽  
Chenyu Li ◽  
Xuezhu Ren ◽  
Karl Schweizer

Working memory capacity (WMC) and fluid intelligence (Gf) are highly correlated, but what accounts for this relationship remains elusive. Process-overlap theory (POT) proposes that the positive manifold is mainly caused by the overlap of domain-general executive processes which are involved in a battery of mental tests. Thus, executive processes are proposed to explain the relationship between WMC and Gf. The current study aims to (1) achieve a relatively purified representation of the core executive processes including shifting and inhibition by a novel approach combining experimental manipulations and fixed-links modeling, and (2) to explore whether these executive processes account for the overlap between WMC and Gf. To these ends, we reanalyzed data of 215 university students who completed measures of WMC, Gf, and executive processes. Results showed that the model with a common factor, as well as shifting and inhibition factors, provided the best fit to the data of the executive function (EF) task. These components explained around 88% of the variance shared by WMC and Gf. However, it was the common EF factor, rather than inhibition and shifting, that played a major part in explaining the common variance. These results do not support POT as underlying the relationship between WMC and Gf.


2019 ◽  
Author(s):  
Jessie Martin ◽  
Jason S. Tsukahara ◽  
Christopher Draheim ◽  
Zach Shipstead ◽  
Cody Mashburn ◽  
...  

**The uploaded manuscript is still in preparation** In this study, we tested the relationship between visual arrays tasks and working memory capacity and attention control. Specifically, we tested whether task design (selection or non-selection demands) impacted the relationship between visual arrays measures and constructs of working memory capacity and attention control. Using analyses from 4 independent data sets we showed that the degree to which visual arrays measures rely on selection influences the degree to which they reflect domain-general attention control.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chaoxiong Ye ◽  
Qianru Xu ◽  
Xinyang Liu ◽  
Piia Astikainen ◽  
Yongjie Zhu ◽  
...  

AbstractPrevious studies have associated visual working memory (VWM) capacity with the use of internal attention. Retrocues, which direct internal attention to a particular object or feature dimension, can improve VWM performance (i.e., retrocue benefit, RCB). However, so far, no study has investigated the relationship between VWM capacity and the magnitudes of RCBs obtained from object-based and dimension-based retrocues. The present study explored individual differences in the magnitudes of object- and dimension-based RCBs and their relationships with VWM capacity. Participants completed a VWM capacity measurement, an object-based cue task, and a dimension-based cue task. We confirmed that both object- and dimension-based retrocues could improve VWM performance. We also found a significant positive correlation between the magnitudes of object- and dimension-based RCB indexes, suggesting a partly overlapping mechanism between the use of object- and dimension-based retrocues. However, our results provided no evidence for a correlation between VWM capacity and the magnitudes of the object- or dimension-based RCBs. Although inadequate attention control is usually assumed to be associated with VWM capacity, the results suggest that the internal attention mechanism for using retrocues in VWM retention is independent of VWM capacity.


Author(s):  
Mirosław Pawlak ◽  
Adriana Biedroń

Abstract This paper reports the findings of a study that investigated the relationship between phonological short-term memory (PSTM), working memory capacity (WMC), and the level of mastery of L2 grammar. Grammatical mastery was operationalized as the ability to produce and comprehend English passive voice with reference to explicit and implicit (or highly automatized) knowledge. Correlational analysis showed that PSTM was related to implicit productive knowledge while WMC was linked to explicit productive knowledge. However, regression analysis showed that those relationships were weak and mediated by overall mastery of target language grammar, operationalized as final grades in a grammar course.


Sign in / Sign up

Export Citation Format

Share Document