Enhancement of initial permeability due to Mn substitution in polycrystalline Ni0.50−xMnxZn0.50Fe2O4

2009 ◽  
Vol 321 (2) ◽  
pp. 81-87 ◽  
Author(s):  
A.K.M. Akther Hossain ◽  
T.S. Biswas ◽  
S.T. Mahmud ◽  
Takeshi Yanagida ◽  
Hidekazu Tanaka ◽  
...  
1998 ◽  
Vol 13 (11) ◽  
pp. 3241-3246 ◽  
Author(s):  
X.Y. Zhang ◽  
J.W. Zhang ◽  
F.R. Xiao ◽  
J.H. Liu ◽  
K.Q. Zhang ◽  
...  

Alloy Digest ◽  
1995 ◽  
Vol 44 (10) ◽  

Abstract NILOMAG ALLOY 77 is a 77 Ni soft magnetic alloy with a high level of initial permeability. This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on heat treating. Filing Code: Ni-488. Producer or source: Inco Alloys International Inc.


Alloy Digest ◽  
1971 ◽  
Vol 20 (10) ◽  

Abstract Carpenter HYMU 80 is an unoriented 80% nickel-iron-molybdenum alloy which offers extremely high initial permeability and maximum permeability with minimum hysteresis loss at low magnetic field strengths. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Ni-5. Producer or source: Carpenter Technology Corporation. Originally published May 1953, revised October 1971.


Fuel ◽  
2021 ◽  
Vol 290 ◽  
pp. 120056
Author(s):  
Daobing Shu ◽  
Tianhu Chen ◽  
Heng Xie ◽  
Fuwei Sun ◽  
Dong Chen ◽  
...  
Keyword(s):  

Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 644 ◽  
Author(s):  
Xinlu Yan ◽  
Songhang Zhang ◽  
Shuheng Tang ◽  
Zhongcheng Li ◽  
Yongxiang Yi ◽  
...  

Due to the unique adsorption and desorption characteristics of coal, coal reservoir permeability changes dynamically during coalbed methane (CBM) development. Coal reservoirs can be classified using a permeability dynamic characterization in different production stages. In the single-phase water flow stage, four demarcating pressures are defined based on the damage from the effective stress on reservoir permeability. Coal reservoirs are classified into vulnerable, alleviative, and invulnerable reservoirs. In the gas desorption stage, two demarcating pressures are used to quantitatively characterize the recovery properties of permeability based on the recovery effect of the matrix shrinkage on permeability, namely the rebound pressure (the pressure corresponding to the lowest permeability) and recovery pressure (the pressure when permeability returns to initial permeability). Coal reservoirs are further classified into recoverable and unrecoverable reservoirs. The physical properties and influencing factors of these demarcating pressures are analyzed. Twenty-six wells from the Shizhuangnan Block in the southern Qinshui Basin of China were examined as a case study, showing that there is a significant correspondence between coal reservoir types and CBM well gas production. This study is helpful for identifying geological conditions of coal reservoirs as well as the productivity potential of CBM wells.


Author(s):  
Lokesh Suthar ◽  
Falguni Bhadala ◽  
Priyanka Kumari ◽  
Sunil Kumar Mishra ◽  
M. Roy

Author(s):  
Amarjot Singh Bhullar ◽  
Gospel Ezekiel Stewart ◽  
Robert W. Zimmerman

Abstract Most analyses of fluid flow in porous media are conducted under the assumption that the permeability is constant. In some “stress-sensitive” rock formations, however, the variation of permeability with pore fluid pressure is sufficiently large that it needs to be accounted for in the analysis. Accounting for the variation of permeability with pore pressure renders the pressure diffusion equation nonlinear and not amenable to exact analytical solutions. In this paper, the regular perturbation approach is used to develop an approximate solution to the problem of flow to a linear constant-pressure boundary, in a formation whose permeability varies exponentially with pore pressure. The perturbation parameter αD is defined to be the natural logarithm of the ratio of the initial permeability to the permeability at the outflow boundary. The zeroth-order and first-order perturbation solutions are computed, from which the flux at the outflow boundary is found. An effective permeability is then determined such that, when inserted into the analytical solution for the mathematically linear problem, it yields a flux that is exact to at least first order in αD. When compared to numerical solutions of the problem, the result has 5% accuracy out to values of αD of about 2—a much larger range of accuracy than is usually achieved in similar problems. Finally, an explanation is given of why the change of variables proposed by Kikani and Pedrosa, which leads to highly accurate zeroth-order perturbation solutions in radial flow problems, does not yield an accurate result for one-dimensional flow. Article Highlights Approximate solution for flow to a constant-pressure boundary in a porous medium whose permeability varies exponentially with pressure. The predicted flowrate is accurate to within 5% for a wide range of permeability variations. If permeability at boundary is 30% less than initial permeability, flowrate will be 10% less than predicted by constant-permeability model.


2009 ◽  
Vol 48 (47) ◽  
pp. 8927-8930 ◽  
Author(s):  
Hui Zheng ◽  
Yanling Dong ◽  
Xin Wang ◽  
Wenjian Weng ◽  
Gaorong Han ◽  
...  

Clay Minerals ◽  
1990 ◽  
Vol 25 (4) ◽  
pp. 507-518 ◽  
Author(s):  
M. H. Ebinger ◽  
D. G. Schulze

AbstractMn-substituted iron oxides were synthesized at pH 4, 6, 8, and 10 from Fe-Mn systems with Mn mole fractions (Mn/(Mn + Fe)) of 0, 0·2, 0·4, 0·6, 0·8, and 1·0, and kept at 50°C for 40 days. The Mn mole fraction in goethite was <0·07 at pH 4 but increased to ∼0.47 at pH 6. Goethite and/or hematite formed in Fe and Fe + Mn syntheses at pH 4 and pH 6 at Mn mole fractions ≤0·8, and at Mn mole fractions ≤0·2 at pH 8 and pH 10. Hausmannite and jacobsite formed at pH 8 and pH 10 at Mn mole fractions ≥0·4. In the pure Mn syntheses, manganite (γ-MnOOH) formed at pH 4 and pH 6, whereas hausmannite (Mn3O4) formed at pH 8 and pH 10. As the Mn substitution increased, the unit-cell dimensions of goethite shifted toward those of groutite, and the mean crystallite dimensions of goethite decreased.


2011 ◽  
Vol 25 (1) ◽  
pp. 85-90 ◽  
Author(s):  
Indu Verma ◽  
R. Rawat ◽  
V. Ganesan ◽  
D. M. Phase ◽  
B. Das
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document