Design of an expert system based on neuro-fuzzy inference analyzer for on-line microstructural characterization using magnetic NDT method

2015 ◽  
Vol 379 ◽  
pp. 131-136 ◽  
Author(s):  
S. Ghanei ◽  
H. Vafaeenezhad ◽  
M. Kashefi ◽  
A.R. Eivani ◽  
M. Mazinani
Author(s):  
Yevgeniy Bodyanskiy ◽  
Valentyna Volkova ◽  
Mark Skuratov

Matrix Neuro-Fuzzy Self-Organizing Clustering NetworkIn this article the problem of clustering massive data sets, which are represented in the matrix form, is considered. The article represents the 2-D self-organizing Kohonen map and its self-learning algorithms based on the winner-take-all (WTA) and winner-take-more (WTM) rules with Gaussian and Epanechnikov functions as the fuzzy membership functions, and without the winner. The fuzzy inference for processing data with overlapping classes in a neural network is introduced. It allows one to estimate membership levels for every sample to every class. This network is the generalization of a vector neuro- and neuro-fuzzy Kohonen network and allows for data processing as they are fed in the on-line mode.


2016 ◽  
Vol 28 (4) ◽  
pp. 393-401 ◽  
Author(s):  
Dejan Mirčetić ◽  
Nebojša Ralević ◽  
Svetlana Nikoličić ◽  
Marinko Maslarić ◽  
Đurđica Stojanović

The paper focuses on the problem of forklifts engagement in warehouse loading operations. Two expert system (ES) models are created using several machine learning (ML) models. Models try to mimic expert decisions while determining the forklifts engagement in the loading operation. Different ML models are evaluated and adaptive neuro fuzzy inference system (ANFIS) and classification and regression trees (CART) are chosen as the ones which have shown best results for the research purpose. As a case study, a central warehouse of a beverage company was used. In a beverage distribution chain, the proper engagement of forklifts in a loading operation is crucial for maintaining the defined customer service level. The created ES models represent a new approach for the rationalization of the forklifts usage, particularly for solving the problem of the forklifts engagement incargo loading. They are simple, easy to understand, reliable, and practically applicable tool for deciding on the engagement of the forklifts in a loading operation.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Muhammet Öztürk ◽  
İbrahim Özkol

AbstractIn this paper, a new approach for Neuro-Fuzzy Controller (NFC) has been presented and compared to previously defined NFCs given in open literature. The proposed controller is based on an on-line Adaptive Neuro-Fuzzy Inference System (ANFIS) and meticulous analysis through simulations is performed to show its robustness. The performance of Neuro-Fuzzy Controllers (NFC) depends on controller inputs. To show the difference and superiority of the proposed controller, many studies in the open literature are examined and compared. Therefore, the advantages and disadvantages of the Neuro-Fuzzy controller are outlined and an optimum Neuro-Fuzzy controller is structured and presented. To test our developed controller for a nonlinear problem, having coupling effects, a 2 DOF helicopter model is chosen. Also to show the robustness, the controller performance which is applied to a 2 DOF helicopter is investigated and compared with other Neuro-Fuzzy controller structures. To better show NFC performance, NFC control results were compared with LQR+I. It is observed that besides being on-line adaptive for all systems, the controller developed has many priorities such as noiseless, strong stability, and better response time.


Sign in / Sign up

Export Citation Format

Share Document