Analytical study of spin current density and spin-transfer torque in semi-Dirac heterostructures

Author(s):  
Abbas Zarifi ◽  
Moslem Zare
2021 ◽  
Vol 11 (14) ◽  
pp. 6501
Author(s):  
Haozhe Huang ◽  
Haiwei Wang ◽  
Zhihao Zeng ◽  
Rongyao Wang ◽  
Xinyu Zhang ◽  
...  

All-optical magnetic switching (AOS) provides a novel approach to improve writing ability and energy efficiency compared to those utilized in the mainstream magnetic data storage products. Rare earth-transition metals (RE-TM) exhibit extremely fast magnetization switching induced by one single incident linearly polarized laser pulse; however, the mechanism is still ambiguous. Here, we show by atomistic spin simulation that the laser induced spin transfer torque dominates the magnetization reversal of Fe sublattice in Gd25Fe75 alloy, and that the switching speed of Gd25Fe75 alloy is relevant to the amount of spin current. This implies that a possible helicity independent mechanism underlies the RE-TM alloy AOS process. We also find that the greater the spin current density the faster the magnetization switching, and the time magnetization reversal of Gd and Fe takes is also affected by the spin current density.


2017 ◽  
Vol 18 (2) ◽  
pp. 133
Author(s):  
Lutfi Rohman ◽  
L. Musyarofah ◽  
Endhah Purwandari

STT (Spin Transfer Torque) can be referred to as a process of manipulation and control of spin current in the field of spintronics. When the material is ferromagnetic nanowire La0.7Sr0.3MnO3injected currents will move the domain wall with accompanying changes of spin currents. In mikromagnetik simulation shows that the application is capable of producing flow velocity or pressure of domain wall in the direction of electron flow. The domain wall pressure generating magnetization changes with increasing current density occurs. To that end, the simulation research was done in order to obtain the effect of the injection of electric current to the magnetization of the material. This phenomenon is simulated by modeling the material into the 3D geometry. The greater the current density is given the domain wall velocity or pressure on the nanowire faster so that the magnetization process is also faster. Changes in the velocity of the fastest domain wall is obtained when the material is injected with a current density as well as M-t get a graph showing oscillation pattern that is denser when the current is increased. Furthermore, the total energy analysis with variations in size diameter of 10 nm, 20 nm and 30 nm. The results show that with increasing diameter, total energy tends to increase. Keywords: spin transfer torque, La0.7Sr0.3MnO3, magnetisation, domain wall, ferromagnetic


2011 ◽  
Vol 24 (2) ◽  
pp. 024210 ◽  
Author(s):  
S Lepadatu ◽  
A P Mihai ◽  
J S Claydon ◽  
F Maccherozzi ◽  
S S Dhesi ◽  
...  

2010 ◽  
Vol 81 (2) ◽  
Author(s):  
S. Lepadatu ◽  
J. S. Claydon ◽  
C. J. Kinane ◽  
T. R. Charlton ◽  
S. Langridge ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document