The effect of thickness-dependent strain relaxation on magnetoelectric behaviors for highly c-axis oriented BiFeO3 films on Si substrate

Author(s):  
TingXian Li ◽  
Ruolan Li ◽  
Yuhao Chen ◽  
Jinyang Liu ◽  
Bingjie Li ◽  
...  
2009 ◽  
Vol 15 (4) ◽  
pp. 1226-1233 ◽  
Author(s):  
Yuh-Renn Wu ◽  
Chinghua Chiu ◽  
Cheng-Yu Chang ◽  
Peichen Yu ◽  
Hao-Chung Kuo

2014 ◽  
Vol 104 (24) ◽  
pp. 241605 ◽  
Author(s):  
Po-Hung Wu ◽  
Ying-Sheng Huang ◽  
Hung-Pin Hsu ◽  
Cheng Li ◽  
Shi-Hao Huang ◽  
...  

1999 ◽  
Vol 607 ◽  
Author(s):  
B. Aslan ◽  
R. Turan ◽  
O. Nur ◽  
M. Karlsteen ◽  
M. Willander

AbstractA Schottky type infrared detector fabricated on a p-type Si1−xGex substrate has a higher cut-off wavelength than one on a pure Si substrate because the barrier height of the Schottky junction on p-type Si1−xGex decreases with the Ge content and the induced strain in the Si1−xGex layer. We have studied the effect of the strain relaxation on the internal photoemission and I-V characteristics of a Pt/Si1−xGex Schottky junction with x=0.14. It is shown that the cut-off wavelength of the diode made on a strained Si0.86Ge0.14 layer is higher than that on a Si substrate as expected. This shows the possibility of tuning the range of these detectors in the mid-infrared region. However, the thermal relaxation in the Si0.86Ge0.14 layer is found to reduce the cut-off wavelength to lower values, showing that the difference between the Fermi level of the metal and the valence band edge increases with the layer relaxation. This effect should be taken into account when a Schottky type infrared detector is manufactured on a strained Si1−xGex film. I-V characteristics of the junctions also indicate an increase of the barrier height with the relaxation of Si1−xGex. These results demonstrate the band edge movements in a Si ixGex layer experimentally agree with the expected changes in the band structure of the Si1−xGex layer with strain relaxation.


2014 ◽  
Author(s):  
Yoshifumi Yamashita ◽  
Kan Tanemoto ◽  
Akihiro Tanaka ◽  
Tatsuya Fushimi

CrystEngComm ◽  
2014 ◽  
Vol 16 (46) ◽  
pp. 10721-10727 ◽  
Author(s):  
Fangliang Gao ◽  
Lei Wen ◽  
Yunfang Guan ◽  
Jingling Li ◽  
Xiaona Zhang ◽  
...  

The as-grown In0.53Ga0.47As epi-layer grown on Si substrate by using low-temperature In0.4Ga0.6As buffer layer with in-situ annealing is of a high degree of structural perfection.


2001 ◽  
Vol 686 ◽  
Author(s):  
S.H. Christiansen ◽  
P.M. Mooney ◽  
J.O. Chu ◽  
A. Grill

AbstractStrain relaxation in He+-implanted and annealed Si(001)/Si1−xGex heterostructures was investigated using transmission electron microscopy techniques and x-ray diffraction. Depending on the implant conditions, bubbles and/or platelets form below the Si/Si1−xGex interface upon annealing and act as nucleation sources for dislocation loops. The dislocation loops extend to the interface and form a misfit dislocation network there, resulting in relaxation of 30-80% of the strain in layers as thin as 100-300 nm. When bubbles form close to the interface, dislocations nucleate by a climb loop mechanism. When smaller bubbles form deeper in the Si substrate an irregular three-dimensional dislocation network forms below the interface resulting in an irregular misfit dislocation network at the interface. When platelets form deeper in the Si substrate, prismatic punching of dislocation loops is observed and dislocation reactions of misfit dislocations at the interface result in Lomer dislocation formation.


2010 ◽  
Vol 1246 ◽  
Author(s):  
Christopher Locke ◽  
Christopher Frewin ◽  
Luca Abbati ◽  
Stephen E. Saddow

AbstractSilicon carbide has robust mechanical, electrical, and chemical properties which make it an attractive material candidate for micro- and nano-electromechanical systems (MEMS and NEMS). 3C-SiC films grown via a polysilicon seed-layer CVD-deposited on an oxide coated (111) Si substrate offers an innovative method to overcome the residual film stress issues associated with 3C-SiC heteroepitaxy and the difficulties of fabricating structures from 3C-SiC films. The oxide plays a dual role by permitting film relaxation with respect to the supporting substrate and functioning as a MEMS release layer, allowing MEMS structures such as cantilevers and diaphragms, to be easily fabricated from the 3C-SiC film. The impact of the oxide layer on the relaxation of the film stress was investigated by comparing direction-sensitive MEMS stress sensors fabricated from 3C-SiC films grown via a polysilicon-on-oxide-coated-substrate and a polysilicon-on-crystalline Si substrate. Scanning Electron Microscopy (SEM) analysis of bridge structures fabricated on the polysilicon-on-oxide substrate revealed evidence of film strain relaxation when compared to bridge structures fabricated on the polysilicon-on-crystalline Si substrate. However, the upward-curled cantilever and comb structures fabricated on both substrates indicate the presence of a strain gradient in the 3C-SiC film grown on both substrates.


2012 ◽  
Vol 249 (3) ◽  
pp. 468-471 ◽  
Author(s):  
Tomoyuki Tanikawa ◽  
Yoshio Honda ◽  
Masahito Yamaguchi ◽  
Hiroshi Amano ◽  
Nobuhiko Sawaki

Sign in / Sign up

Export Citation Format

Share Document