scholarly journals Effect of coke rate and basicity on computed tomography-measured pore parameters and effective thermal conductivity of iron ore sinter

2019 ◽  
Vol 8 (6) ◽  
pp. 6191-6201 ◽  
Author(s):  
Mingxi Zhou ◽  
Hao Zhou ◽  
Pengnan Ma ◽  
Jianuo Xu
2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Swaren Bedarkar ◽  
Nurni Neelakantan Viswanathan ◽  
Nidambur Bharatha Ballal

Heat transfer in packed beds and their thermal response have been of great interest for scientists and engineers for the last several years, since they play a crucial role in determining design and operation of reactors. Heat transfer of a packed bed is characterised through lumped parameter, namely, effective thermal conductivity. In the present studies, experiments were performed to investigate the thermal conductivity of a packed bed in radial direction. The packed bed was formed using iron ore particles. To determine the effective thermal conductivity a new transient methodology is proposed. The results obtained were compared with the models proposed by ZBS and Kunii and Smith.


2018 ◽  
Vol 339 ◽  
pp. 81-89 ◽  
Author(s):  
Tobin Harvey ◽  
Tom Honeyands ◽  
Geoffrey Evans ◽  
Bélinda Godel ◽  
Damien O'Dea

Author(s):  
Eric N. Schmierer ◽  
Arsalan Razani ◽  
Scott Keating ◽  
Tony Melton

High porosity metal foams have been the subject of many investigations for use in heat transfer enhancement through increased effective thermal conductivity and surface area. Convection heat transfer applications with these foams have been investigated for a large range of Reynolds numbers. Common to these analyses is the need for quantitative information about the interfacial surface area and the effective thermal conductivity of the metal foam. The effective thermal conductivity of these metal foams have been well characterized, however little investigation has been made into the actual surface area of the foam and its dependence on the foam pore density and porosity. Three-dimensional x-ray computed tomography (CT) is used for determining interfacial surface area and ligament diameter of metal foam with porosities ranging from 0.85 to 0.97 and pore densities of 5, 10, 20, and 40 pores per inch. Calibration samples with known surface area and volume are utilized to benchmark the CT process. Foam results are compared to analytical results obtained from the development of a three-dimensional model of the high porosity open-celled foam. The results obtained are compared to results from previous investigations into these geometric parameters. Results from calibration sample comparison and analysis of the foam indicate the need for additional work in quantifying the repeatability and sources of error in CT measurement process.


Sign in / Sign up

Export Citation Format

Share Document