scholarly journals Effect of machinability, microstructure and hardness of deep cryogenic treatment in hard turning of AISI D2 steel with ceramic cutting

2020 ◽  
Vol 9 (1) ◽  
pp. 969-983 ◽  
Author(s):  
Fuat Kara ◽  
Mustafa Karabatak ◽  
Mustafa Ayyıldız ◽  
Engin Nas
2015 ◽  
Vol 1120-1121 ◽  
pp. 1257-1263
Author(s):  
Cosme Roberto Moreira Silva ◽  
Tiago F.O. Melo ◽  
José A. Araújo ◽  
J.L.A. Ferreira ◽  
S.J. Gobbi

Wear resistance of tool steels can be increased with deep cryogenic treatment (DCT) application. Mechanisms related to DCT are still not completely understood. Microabrasive wear resistance of cryogenically treated samples of AISI D2 steel was evaluated in terms of austenitization temperature at heat treatment cycle and quenching steps related to DCT. X-ray difractometry, scanning and optical microscopy and quantitative evaluation of carbides with image analysis were carried out aiming material characterization. For samples subjected to higher austenitization temperatures, the DCT treatment does not increase abrasive wear resistance. For samples treated at lower austenitization temperature, the DCT treatment results on 44% increase at abrasive resistance. This effect is correlated to the increase of the amount of fine carbides distributed at samples matrices cryogenically treated.


2010 ◽  
Vol 117 ◽  
pp. 49-54 ◽  
Author(s):  
Debdulal Das ◽  
Apurba Kishore Dutta ◽  
Kalyan Kumar Ray

This study aims to reveal the underlying mechanism associated with the enhancement of wear resistance of tool steels by deep cryogenic treatment and to resolve the issue of reported varied degree of improvement in wear resistance through structure-property correlation of cryotreated vis-à-vis conventionally treated AISI D2 steel. Microstructures of heat treated specimens have been characterized employing various techniques with specific emphasis on quantitative estimation of the characteristics of secondary carbides. Evaluations of properties include measurements of bulk hardness, apparent strength of the matrix, fracture toughness and dry sliding wear resistance under wide rage of normal loads supplemented by in-depth characterizations of worn surfaces, wear debris and subsurfaces of worn specimens in order to identify the operative mode and mechanism of wear. It has been demonstrated that the favorable modifications of the precipitation behavior of secondary carbides in addition to removal of retained austenite are the governing mechanisms for the enhancement of wear resistance of tool steels by deep cryogenic treatment. The cause of the reported varied degree of improvement in wear resistance by deep cryogenic treatment has been explained by disparity of the operative modes and mechanisms of wear.


2020 ◽  
Vol 60 ◽  
pp. 457-469
Author(s):  
Sarmad Ali Khan ◽  
Saqib Anwar ◽  
Kashif Ishfaq ◽  
Muhammad Zubair Afzal ◽  
Shafiq Ahmad ◽  
...  

2018 ◽  
Vol 20 ◽  
pp. 406-413 ◽  
Author(s):  
Ramanuj Kumar ◽  
Ashok Kumar Sahoo ◽  
Rabin Kumar Das ◽  
Amlana Panda ◽  
Purna Chandra Mishra

2017 ◽  
Vol 80 (1) ◽  
Author(s):  
Amrifan Saladin Mohruni ◽  
Muhammad Yanis ◽  
Edwin Kurniawan

Hard turning is an alternative to traditional grinding in the manufacturing industry for hardened ferrous alloy material above 45 HRC. Hard turning has advantages such as lower equipment cost, shorter setup time, fewer process steps, greater part geometry flexibility and elimination of cutting fluid. In this study, the effect of cutting speed and feed rate on surface roughness in hard turning was experimentally investigated. AISI D2 steel workpiece (62 HRC) was machined with Cubic Boron Nitride (CBN) insert under dry machining. A 2k-factorial design with 4 centre points as an initial design of experiment (DOE) and a central composite design (CCD) as augmented design were used in developing the empirical mathematical models. They were employed for analysing the significant machining parameters. The results show that the surface roughness value decreased (smoother) with increasing cutting speed. In contrary, surface roughness value increased significantly when the feed rate increased. Optimum cutting speed and feed rate condition in this experiment was 105 m/min and 0.10 mm/rev respectively with surface roughness value was 0.267 µm. Further investigation revealed that the second order model is a valid surface roughness model, while the linear model cannot be used as a predicted model due to its lack of fit significance.


2015 ◽  
Vol 766-767 ◽  
pp. 649-654
Author(s):  
A. Srithar ◽  
K. Palanikumar ◽  
B. Durgaprasad

The machining of hard turning is performed on hardened steel in the range of 45 to 68 Rockwell hardness using a variety of tool materials such as Polycrystalline cubic boron nitride (PCBN) , Polycrystalline diamond (PCD) and Cubic boron nitride (CBN). It is an alternative to conventional grinding process is a flexible and effective machining process for hardened metals and hence broadly used in various applications such as dies, moulds, tools, gears, cams, shafts, axles, bearings and forgings. Although the process is performed within small depth of cut and feed rates, estimates to reduce machining time as high as 60 % in hard turning. This paper discusses the importance of hard turning of AISI D2 steel. In this study, Experimental investigations are carried out on conventional lathe using prefixed the cutting conditions. The responses studied in the investigation are cutting forces (Fa, Ft and Fz). The cutting parameters considered for the investigation are cutting speed, feed and depth of cut. The influence of machining parameters on response is studied and presented in detail.


Sign in / Sign up

Export Citation Format

Share Document