scholarly journals Analysis of critical interfacial shear strength between polymer matrix and carbon nanotubes and its impact on the tensile strength of nanocomposites

2020 ◽  
Vol 9 (3) ◽  
pp. 4123-4132 ◽  
Author(s):  
Yasser Zare ◽  
Kyong Yop Rhee
RSC Advances ◽  
2020 ◽  
Vol 10 (23) ◽  
pp. 13573-13582
Author(s):  
Yasser Zare ◽  
Kyong Yop Rhee

In this paper, the “B” interphase parameter in the Pukanszky model and interphase strength for polymer carbon nanotube (CNT) nanocomposites are expressed by the critical interfacial shear strength (τc) and interfacial shear strength (τ) between a polymer matrix and CNTs.


Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 990
Author(s):  
Yasser Zare ◽  
Kyongyop Rhee

This study focuses on the simultaneous stiffening and percolating characteristics of the interphase section in polymer carbon nanotubes (CNTs) systems (PCNTs) using two advanced models of tensile modulus and strength. The interphase, as a third part around the nanoparticles, influences the mechanical features of such systems. The forecasts agree well with the tentative results, thus validating the advanced models. A CNT radius of >40 nm and CNT length of <5 μm marginally improve the modulus by 70%, while the highest modulus development of 350% is achieved with the thinnest nanoparticles. Furthermore, the highest improvement in nanocomposite’s strength (350%) is achieved with the CNT length of 12 μm and interfacial shear strength of 8 MPa. Generally, the highest ranges of the CNT length, interphase thickness, interphase modulus and interfacial shear strength lead to the most desirable mechanical features.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Yang Zou ◽  
Jinlong Jiang ◽  
Zhixiang Zhou ◽  
Xifeng Wang ◽  
Jincen Guo

Prefabricated UHPC-steel composite structure can make full use of the two materials’ mechanical and construction performance characteristics, with super mechanical properties and durability, which has been proved to be a very promising structure. However, using traditional mechanical connectors to connect prefabricated UHPC and steel not only is inconvenient for the prefabrication of UHPC components but also introduces heavy welding work, which is detrimental to the construction speed and antifatigue performance of the composite structure. Bonding UHPC-steel interface with epoxy adhesive is a potential alternative to avoid the above problem. In order to explore the mechanical properties of the prefabricated UHPC-steel epoxy bonding interface, this study carried out the direct shear test, tensile test, and tensile-shear test of the UHPC-steel epoxy-bonded interface (prefabricated UHPC-steel epoxy bonding interface). The results show that the interface failure is mainly manifested as the peeling of the epoxy-UHPC interface and the destruction of part of the UHPC matrix (the failure of the UHPC's surface). In pure shear and pure tension state, the interfacial shear strength is 5.14 MPa and the interfacial tensile strength is 1.18 MPa. In the tensile-shear state, the interfacial shear strength is 0.61 MPa and the interfacial tensile strength is 1.06 MPa. The stress-displacement curves of the interface normal and tangential direction are all in the shape of a two-fold line. The ultimate displacement was within 0.1 mm, showing the characteristics of brittle failure. Finally, a numerical model of the tensile specimen is established based on the cohesive interface element, and the interfacial tensile-shear coupling failure mechanism (tensile-shear coupling effect) is analyzed.


Sign in / Sign up

Export Citation Format

Share Document