Relation between interfacial shear strength and tensile strength of carbon fiber/resin composite strands

1998 ◽  
Vol 6 (4) ◽  
pp. 305-323 ◽  
Author(s):  
M. Shioya ◽  
S. Yasui ◽  
A. Takaku
2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Hongxiao Wang ◽  
Xiaohui Zhang ◽  
Yugang Duan ◽  
Lingjie Meng

This study examined the influence mechanism of temperature on the interfacial shear strength (IFSS) between carbon fiber (CF) and epoxy resin (EP) matrices under various thermal loads using experimental and numerical simulation methods. To evaluate the change in IFSS as a function of the increase in temperature, a microbond test was performed under controlled temperature environment from 23°C to 150°C. The experimental results showed that IFSS values of CF/EP reduce significantly when the temperature reaches near glass transition temperature. To interpret the effect of thermal loads on IFSS, a thermal-mechanical coupling finite element model was used to simulate the process of fiber pull-out from EP. The results revealed that temperature dependence of IFSS is linked to modulus of the matrix as well as to the coefficients of thermal expansion of the fiber and matrix.


2018 ◽  
Vol 774 ◽  
pp. 7-12
Author(s):  
Hideaki Katogi ◽  
Kenichi Takemura ◽  
Mao Mochizuki

In this study, interfacial shear strength of resin particles added carbon fiber/maleic acid anhydride grafted polypropylene under water temperature was investigated. Water temperature range was from room temperature to 80 oC. The maximum immersion time was 24 hours. Micro debonding tests of non and resin particles added composites were conducted. Fracture surface of resin particles added composite were observed by Scanning Electron Microscope (SEM). As a result, interfacial shear strengths of non particles added composite monotonously decreased with an increase of water temperature. Interfacial shear strength of resin particles added composite was higher than that of non resin particles added composite under all water temperatures except for 50 oC. From SEM observation, large resin particles on surface of carbon fiber after water immersion at 50 oC were found. And, many matrices and large resin particles on surface of carbon fiber after water immersion at 80 oC were found. Therefore, interfacial shear strength of composite was improved because resin particle addition prevented water penetration into the interface between fiber and matrix under water immersion less than 50 oC. And, interfacial shear strength of composite was probably improved by anchor effect of resin particle under water immersion at 80 oC.


Sign in / Sign up

Export Citation Format

Share Document