scholarly journals Achieving high strength-ductility synergy in a hierarchical structured metastable β-titanium alloy using through-transus forging

2021 ◽  
Vol 11 ◽  
pp. 1622-1636
Author(s):  
Xiangyun Bao ◽  
Wei Chen ◽  
Jinyu Zhang ◽  
Yonghai Yue ◽  
Jun Sun
Keyword(s):  
Alloy Digest ◽  
2001 ◽  
Vol 50 (8) ◽  

Abstract TIMETAL 829 is a Ti-5.5Al-3.5Sn-3Zr-1Nb-0.25Mo-0.3Si near-alpha titanium alloy that is weldable and has high strength and is a creep resistant high temperature alloy. The major application is as gas turbine engine components. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness, creep, and fatigue. It also includes information on forming and heat treating. Filing Code: TI-118. Producer or source: Timet.


Alloy Digest ◽  
1987 ◽  
Vol 36 (7) ◽  

Abstract UNS No. R54620 is an alpha-beta titanium alloy. It has an excellent combination of tensile strength, creep strength, toughness and high-temperature stability that makes it suitable for service to 1050 F. It is recommended for use where high strength is required. It has outstanding advantages for long-time use at temperatures to 800 F. This datasheet provides information on composition, physical properties, elasticity, tensile properties, and bend strength as well as creep. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Ti-86. Producer or source: Titanium alloy mills.


Alloy Digest ◽  
2020 ◽  
Vol 69 (8) ◽  

Abstract ATI 6-2-4-2 is a near-alpha, high strength, titanium alloy that exhibits a good combination of tensile strength, creep strength, toughness, and long-term stability at temperatures up to 425 °C (800 °F). Silicon up to 0.1% frequently is added to improve the creep resistance of the alloy. This datasheet provides information on composition, physical properties, hardness, and tensile properties as well as creep. It also includes information on high temperature performance as well as forming, heat treating, machining, and joining. Filing Code: Ti-169. Producer or Source: ATI.


Alloy Digest ◽  
2007 ◽  
Vol 56 (10) ◽  

Abstract Timetal 685 is a titanium alloy with 6 Al, 5 Zr, 0.5 Mo, and 0.25 Si. It is a near-alpha alloy with high strength and creep resistance. Applications are in the aerospace industry. This datasheet provides information on composition, physical properties, elasticity, tensile properties, and shear strength as well as fracture toughness and creep. It also includes information on forming, heat treating, and joining. Filing Code: TI-142. Producer or source: Timet.


2010 ◽  
Vol 638-642 ◽  
pp. 1185-1190 ◽  
Author(s):  
Hui Jie Liu ◽  
Li Zhou ◽  
Yong Xian Huang ◽  
Qi Wei Liu

As a new solid-state welding process, friction stir welding (FSW) has been successfully used for joining low melting point materials such as aluminum and magnesium alloys, but the FSW of high melting point materials such as steels and titanium alloys is still difficult to carry out because of their strict requirements for the FSW tool. Especially for the FSW of titanium alloys, some key technological issues need to solve further. In order to accomplish the FSW of titanium alloys, a specially designed tool system was made. The system was composed of W-Re pin tool, liquid cooling holder and shielding gas shroud. Prior to FSW, the Ti-6Al-4V alloy plates were thermo-hydrogen processed to reduce the deformation resistance and tool wear during the FSW. Based on this, the thermo-hydrogen processed Ti-6Al-4V alloy with different hydrogen content was friction stir welded, and the microstructural characterizations and mechanical properties of the joints were studied. Experimental results showed that the designed tool system can fulfill the requirements of the FSW of titanium alloys, and excellent weld formation and high-strength joint have been obtained from the titanium alloy plates.


2012 ◽  
Vol 53 (9-10) ◽  
pp. 505-507
Author(s):  
S. V. S. Narayana Murty ◽  
Niraj Nayan ◽  
S. C. Sharma ◽  
K. Sree Kumar ◽  
P. P. Sinha

2018 ◽  
Vol 2018 (3) ◽  
pp. 8-15
Author(s):  
S.V. Akhonin ◽  
◽  
V.A. Berezos ◽  
A.N. Pikulin ◽  
A.Yu. Severin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document