scholarly journals On the Role of Process Parameters on Meltpool Temperature and Tensile Properties of Stainless Steel 316L Produced by Powder Bed Fusion

Author(s):  
Mahyar Khorasani ◽  
Amir Hossein Ghasemi ◽  
Umar Shafique Awan ◽  
Sarat Singamneni ◽  
Guy Littlefair ◽  
...  
2021 ◽  
pp. 102104
Author(s):  
Xianglong Wang ◽  
Oscar Sanchez-Mata ◽  
Sıla Ece Atabay ◽  
Jose Alberto Muñiz-Lerma ◽  
Mohammad Attarian Shandiz ◽  
...  

2021 ◽  
Vol 40 ◽  
pp. 101943
Author(s):  
Cole Britt ◽  
Colt J. Montgomery ◽  
Michael J. Brand ◽  
Zi-Kui Liu ◽  
John S. Carpenter ◽  
...  

Author(s):  
Rafael de Moura Nobre ◽  
Willy Ank de Morais ◽  
Matheus Tavares Vasques ◽  
Jhoan Guzmán ◽  
Daniel Luiz Rodrigues Junior ◽  
...  

2021 ◽  
Vol 67 ◽  
pp. 58-68
Author(s):  
Jithin Kozhuthala Veetil ◽  
Mahyar Khorasani ◽  
AmirHossein Ghasemi ◽  
Bernard Rolfe ◽  
Ivo Vrooijink ◽  
...  

2019 ◽  
Vol 25 (1) ◽  
pp. 162-175 ◽  
Author(s):  
Abdullah AlFaify ◽  
James Hughes ◽  
Keith Ridgway

Purpose The pulsed-laser powder bed fusion (PBF) process is an additive manufacturing technology that uses a laser with pulsed beam to melt metal powder. In this case, stainless steel SS316L alloy is used to produce complex components. To produce components with acceptable mechanical performance requires a comprehensive understanding of process parameters and their interactions. This study aims to understand the influence of process parameters on reducing porosity and increasing part density. Design/methodology/approach The response surface method (RSM) is used to investigate the impact of changing critical parameters on the density of parts manufactured. Parameters considered include: point distance, exposure time, hatching distance and layer thickness. Part density was used to identify the most statistically significant parameters, before each parameter was analysed individually. Findings A clear correlation between the number and shape of pores and the process parameters was identified. Point distance, exposure time and layer thickness were found to significantly affect part density. The interaction between these parameters also critically affected the development of porosity. Finally, a regression model was developed and verified experimentally and used to accurately predict part density. Research limitations/implications The study considered a range of selected parameters relevant to the SS316L alloy. These parameters need to be modified for other alloys according to their physical properties. Originality/value This study is believed to be the first systematic attempt to use RSM for the design of experiments (DOE) to investigate the effect of process parameters of the pulsed-laser PBF process on the density of the SS316L alloy components.


Author(s):  
L. Ávila Calderón ◽  
B. Rehmer ◽  
S. Schriever ◽  
A. Ulbricht ◽  
L.Agudo Jácome ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4280
Author(s):  
Magnus Neikter ◽  
Emil Edin ◽  
Sebastian Proper ◽  
Phavan Bhaskar ◽  
Gopi Krishna Nekkalapudi ◽  
...  

Alloy 21-6-9 is an austenitic stainless steel with high strength, thermal stability at high temperatures, and retained toughness at cryogenic temperatures. This type of steel has been used for aerospace applications for decades, using traditional manufacturing processes. However, limited research has been conducted on this alloy manufactured using laser powder-bed fusion (LPBF). Therefore, in this work, a design of experiment (DOE) was performed to obtain optimized process parameters with regard to low porosity. Once the optimized parameters were established, horizontal and vertical blanks were built to investigate the mechanical properties and potential anisotropic behavior. As this alloy is exposed to elevated temperatures in industrial applications, the effect of elevated temperatures (room temperature and 750 °C) on the tensile properties was investigated. In this work, it was shown that alloy 21-6-9 could be built successfully using LPBF, with good properties and a density of 99.7%, having an ultimate tensile strength of 825 MPa, with an elongation of 41%, and without any significant anisotropic behavior.


Sign in / Sign up

Export Citation Format

Share Document