scholarly journals Microstructure and mechanical properties of powder metallurgy 2024 aluminum alloy during cold rolling

Author(s):  
Tao Wang ◽  
Yufeng Huang ◽  
Yunzhu Ma ◽  
Lei Wu ◽  
Huanyuan Yan ◽  
...  
2013 ◽  
Vol 834-836 ◽  
pp. 425-431
Author(s):  
Zhi Ming Du ◽  
Jun Liu ◽  
Jia Hong Niu ◽  
Wang Qi Zhao ◽  
Sen Cong

Microstructure and mechanical properties of 2024 aluminum alloy flange semi-solid thixoforging by changing cavity was investigated. Theoretical calculation and forming test were adopted to study the preparation of flange. It is concluded that the influence factors of forming limit of flanges are radical load P, friction τ and thickness t by theoretical calculation. The results show that it is uniform in the process of forming. Microstructure and mechanical properties of flange have been improved significantly with the increase of the radical load. Way of variable cavity realized the real plastic deformation, which results in high mechanical properties of flange. The flange could obtain fine microstructure with grain sizes of 20~30μm, tensile strength of 433MPa and elongation of 10.1%, with changing amount of 30MPa. The results indicate that the microstructure and mechanical properties could achieve forging requirement and be controlled using changing cavity.


2014 ◽  
Vol 941-944 ◽  
pp. 3-7 ◽  
Author(s):  
Shi Xing Zhang ◽  
Yu Ping Zhu ◽  
Gang Yi Cai

Process of solution treatment of 2024 aluminum alloy was done by hardness test and microanalysis in this paper. The effects of different solution treatment temperature on the microstructure and mechanical properties of 2024 aluminum alloy were studied and the influence of overburning on the microstructure and mechanical properties of 2024 aluminum alloy were also analyzed. The experimental results show that overburning occurs while 2024 aluminum alloy is heated over 490°C×50min . The hardness tests and microstructure analysis results show that the hardness decreased, grain boundary becomes trigemanal and compounded –melting structure (burnt structure) appeared when overburning occuring for this alloy .


Sign in / Sign up

Export Citation Format

Share Document