Influence of Overburning on Microstructure and Property of 2024 Aluminum Alloy

2014 ◽  
Vol 941-944 ◽  
pp. 3-7 ◽  
Author(s):  
Shi Xing Zhang ◽  
Yu Ping Zhu ◽  
Gang Yi Cai

Process of solution treatment of 2024 aluminum alloy was done by hardness test and microanalysis in this paper. The effects of different solution treatment temperature on the microstructure and mechanical properties of 2024 aluminum alloy were studied and the influence of overburning on the microstructure and mechanical properties of 2024 aluminum alloy were also analyzed. The experimental results show that overburning occurs while 2024 aluminum alloy is heated over 490°C×50min . The hardness tests and microstructure analysis results show that the hardness decreased, grain boundary becomes trigemanal and compounded –melting structure (burnt structure) appeared when overburning occuring for this alloy .

2012 ◽  
Vol 476-478 ◽  
pp. 118-121 ◽  
Author(s):  
Shi Xing Zhang ◽  
Shao Min Qu

Process of solution treatment of 6061 aluminum alloy was done by hardness test and microanalysis in this paper. The effects of different solution treatment temperature on the microstructure and mechanical properties of 6061 aluminum alloy were studied and the influence of overburning on the microstructure and mechanical properties of 6061 aluminum alloy were also analyzed. The experimental results show that overburning occurring while 6061 aluminum alloy is heated above 580°C . The hardness measurements and microstructure analysis results show that the hardness decreased, grain boundary becomes trigemanal and compounded –melting structure (burnt structure) appeared when overburning occuring for this alloy .


2016 ◽  
Vol 879 ◽  
pp. 653-658
Author(s):  
Ju Hyun Won ◽  
Seok Hong Min ◽  
Tae Kwon Ha

Effect of B addition on the microstructure and mechanical properties of AZ84 Mg alloy was investigated in this study. Through calculation of phase equilibria of AZ84 Mg alloy, carried out by using FactSage® and FTLite database, solution treatment temperature was decided as temperature of 330oC, where supersaturated solid solution can be obtained. Solid solution treatment of AZ84 Mg alloy was successfully conducted at 330oC and supersaturated microstructure with all almost all phases resolved into matrix was obtained. After solution treatment, hot rolling was successfully conducted by reduction of 60%. Compression and tension tests were carried out at room temperature on the samples in as-cast, solution treated, hot-rolled and subsequently recrystallized states. After solid solution treatment, each alloy was soaked at temperatures of 180 and 200oC for time intervals from 1 min to 48 hrs and hardness of each condition was measured by micro-Vickers method. Peak aging conditions were deduced as at the temperature of 200 oC for 10 hrs for ZA84 Mg alloy. By addition of boron, aging kinetics was expedited and strength was enhanced.


Author(s):  
N. S. Cheruvu ◽  
V. P. Swaminathan ◽  
C. D. Kinney

Degradation of microstructure and mechanical properties of a service run GTD-111 DS blade was evaluated. The blade was coated with a CoCrAlY coating (GT-29) and had operated on a GE Model MS 5002 engine for 54,850 hours. To recover the microstructure of the degraded blade, the effect of solution treatment temperature on the microstructure and properties was evaluated. The blanks removed from the airfoil tip section were given a commonly used partial solution treatment 2050°F (1120°C) for GTD-111 and a high temperature solution treatment 2175°F (1190°C) prior to the partial solution and aging treatments. Microstructure and creep test results of these heat treated specimens revealed that the high temperature solution treatment was necessary to recover the microstructure and properties of in-service degraded GTD-111 DS buckets.


2011 ◽  
Vol 339 ◽  
pp. 714-717 ◽  
Author(s):  
Siriwan Pannaray ◽  
Sirikul Wisutmethangoon ◽  
Thawatchai Plookphol ◽  
Jessada Wannasin

The aim of this study is to determine the appropriate solution treatment temperature and time of semi solid 2024 Al alloy. Solution heat treatment at 450°C and 480 °C for various times, from 4 hours to 16 hrs, were applied followed by artificial aging at 220 °C for 1 hr. Microstructure of the semi solid cast 2024 aluminum alloy mainly showed globular grain structure which consisted of matrix-α (Al) and grain boundary (GB) - eutectic phases (α+Al2CuMg/Al2Cu). Eutectic GB phases was found to completely dissolved after solution heat treatment at 480°C for 14 hrs while sample solution treated at 450°C for the same time showed the existence of remaining GB phases. Prolonging heat treatment after 14 hrs at both temperatures resulted in the formation of coarse black particles at the grain boundaries which were identified as Mg2Si phases. Therefore the suitable solution treatment of the alloy in this study was at 480°C for 14 hrs.


Sign in / Sign up

Export Citation Format

Share Document