scholarly journals Effect of fluoride conversion pretreatment time and the microstructure on the corrosion performance of TEOS-GPTMS sol-gel coatings deposited on the WE54 magnesium alloy

Author(s):  
K.S. Durán ◽  
C.A. Hernández-Barrios ◽  
A.E. Coy ◽  
F. Viejo
2018 ◽  
Vol 27 (11) ◽  
pp. 6080-6086 ◽  
Author(s):  
Zhang Na ◽  
Yu Shengxue ◽  
Xing Qian ◽  
Chen Xiaolei ◽  
Zhang Mingxian ◽  
...  

Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 784
Author(s):  
Longlong Zhang ◽  
Yuanzhi Wu ◽  
Tian Zeng ◽  
Yu Wei ◽  
Guorui Zhang ◽  
...  

The purpose of this study was to improve the cellular compatibility and corrosion resistance of AZ31 magnesium alloy and to prepare a biodegradable medical material. An aminated hydroxyethyl cellulose (AHEC) coating was successfully prepared on the surface of a micro-arc oxide +AZ31 magnesium alloy by sol–gel spinning. The pores of the micro-arc oxide coating were sealed. A polarization potential test analysis showed that compared to the single micro-arc oxidation coating, the coating after sealing with AHEC significantly improved the corrosion resistance of the AZ31 magnesium alloy and reduced its degradation rate in simulated body fluid (SBF). The CCK-8 method and cell morphology experiments showed that the AHEC + MAO coating prepared on the AZ31 magnesium alloy had good cytocompatibility and bioactivity.


CORROSION ◽  
2012 ◽  
Vol 68 (5) ◽  
pp. 388-397 ◽  
Author(s):  
N.-G. Wang ◽  
R.-C. Wang ◽  
C.-Q. Peng ◽  
Y. Feng

Magnesium alloys AP65 with and without 0.3% (mass fraction) manganese additions were prepared by melting and casting. Their discharge and corrosion behavior in 3.5% sodium chloride (NaCl) solution was investigated with electrochemical measurement, immersion testing, and corrosion morphology observation. The results show that manganese promotes the grain refinement and reduces the self corrosion rate of AP65 alloy. Magnesium alloy AP65 added with manganese provides a more negative discharge potential than that without the addition of manganese, attributed to the homogeneously distributed Al11Mn4 particles, which facilitate the self-peeling of corrosion products during the discharge process. This means that the discharge and corrosion performance of AP65 alloy can be improved by adding manganese.


Sign in / Sign up

Export Citation Format

Share Document