scholarly journals Enhanced Magnetic Nanoparticles Dispersion Effect on the Behaviour of Ultrasonication-Assisted Compounding Processing of PLA/LNR/NiZn Nanocomposites

Author(s):  
Dalila Shahdan ◽  
Moayad Husein Flaifel ◽  
Sahrim Ahmad ◽  
Ruey Shan Chen ◽  
Jeefferie Abd Razak
2018 ◽  
Vol 8 (8) ◽  
pp. 1241 ◽  
Author(s):  
Cindy Yadel ◽  
Aude Michel ◽  
Sandra Casale ◽  
Jerome Fresnais

Iron oxide nanoparticles are intended to be used in bio-applications for drug delivery associated with hyperthermia. However, their interactions with complex media often induces aggregation, and thus a detrimental decrease of their heating efficiency. We have investigated the role of iron oxide nanoparticles dispersion into dense aggregates composed with magnetic/non-magnetic nanoparticles and showed that, when iron oxide nanoparticles were well-distributed into the aggregates, the specific absorption rate reached 79% of the value measured for the well-dispersed case. This study should have a strong impact on the applications of magnetic nanoparticles into nanostructured materials for therapy or catalysis applications.


2013 ◽  
Vol 8 (0) ◽  
pp. 1403010-1403010 ◽  
Author(s):  
Makoto SASAKI ◽  
Kimitaka ITOH ◽  
Naohiro KASUYA ◽  
Klaus HALLATSCHEK ◽  
Sanae-I. ITOH

PIERS Online ◽  
2009 ◽  
Vol 5 (3) ◽  
pp. 231-234 ◽  
Author(s):  
Tsung-Han Tsai ◽  
Long-Sheng Kuo ◽  
Ping-Hei Chen ◽  
Chin-Ting Yang

2017 ◽  
Author(s):  
Bo Tian ◽  
Peter Svedlindh ◽  
Mattias Strömberg ◽  
Erik Wetterskog

In this work, we demonstrate for the first time, a ferromagnetic resonance (FMR) based homogeneous and volumetric biosensor for magnetic label detection. Two different isothermal amplification methods, <i>i.e.</i>, rolling circle amplification (RCA) and loop-mediated isothermal amplification (LAMP) are adopted and combined with a standard electron paramagnetic resonance (EPR) spectrometer for FMR biosensing. For RCA-based FMR biosensor, binding of RCA products of a synthetic Vibrio cholerae target DNA sequence gives rise to the formation of aggregates of magnetic nanoparticles. Immobilization of nanoparticles within the aggregates leads to a decrease of the net anisotropy of the system and a concomitant increase of the resonance field. A limit of detection of 1 pM is obtained with an average coefficient of variation of 0.16%, which is superior to the performance of other reported RCA-based magnetic biosensors. For LAMP-based sensing, a synthetic Zika virus target oligonucleotide is amplified and detected in 20% serum samples. Immobilization of magnetic nanoparticles is induced by their co-precipitation with Mg<sub>2</sub>P<sub>2</sub>O<sub>7</sub> (a by-product of LAMP) and provides a detection sensitivity of 100 aM. The fast measurement, high sensitivity and miniaturization potential of the proposed FMR biosensing technology makes it a promising candidate for designing future point-of-care devices.<br>


2020 ◽  
Vol 84 (11) ◽  
pp. 1362-1365
Author(s):  
A. V. Komina ◽  
R. N. Yaroslavtsev ◽  
Y. V. Gerasimova ◽  
S. V. Stolyar ◽  
I. A. Olkhovsky ◽  
...  

2018 ◽  
pp. 17-28
Author(s):  
Hwunjae Lee ◽  
◽  
SangBock Lee ◽  
Geahwan Jin ◽  
Sergey NETESOV ◽  
...  

2018 ◽  
pp. 17-28
Author(s):  
Hwunjae Lee ◽  
◽  
SangBock Lee ◽  
Geahwan Jin ◽  
Sergey NETESOV ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document