Revealing the atomistic deformation mechanisms of face-centered cubic nanocrystalline metals with atomic-scale mechanical microscopy: A review

2018 ◽  
Vol 34 (11) ◽  
pp. 2027-2034 ◽  
Author(s):  
Duohui Li ◽  
Xinyu Shu ◽  
Deli Kong ◽  
Hao Zhou ◽  
Yanhui Chen
NANO ◽  
2018 ◽  
Vol 13 (03) ◽  
pp. 1850026
Author(s):  
Sergey Shityakov ◽  
Norbert Roewer ◽  
Carola Y. Förster ◽  
Hai T. Tran ◽  
Wenjun Cai ◽  
...  

The purpose of this study is to investigate polycrystalline lattices of aluminum (Al) under the stress–strain conditions in all-atom molecular dynamics simulations and Al alloys using X-ray diffraction. Isothermal uniaxial tension and compression of these polycrystalline lattices showed no dislocation nucleation peaks, which correspond only to the Al monocrystal form. The best tensile and compressive resistance characteristics were observed for a material with the highest grain number ([Formula: see text]) due to the significant reduction of the face-centered cubic lattice in the metal structure. This process is mainly driven by the gradual elevation of the system’s kinetic energy. In the experiment, the amorphous Al alloys with higher manganese composition (20.5%) were investigated, matching the simulated amorphous structures. Overall, the results suggest that the increase in number of grains in Al lattices diminishes the stress–strain impact due to a more disordered atomic-scale (amorphous) metal composition.


2016 ◽  
Vol 18 (44) ◽  
pp. 30622-30629 ◽  
Author(s):  
L. S. R. Kumara ◽  
Osami Sakata ◽  
Shinji Kohara ◽  
Anli Yang ◽  
Chulho Song ◽  
...  

The 3D configuration models of novel fcc and conventional hcp ruthenium nanoparticles are studied to elucidate their CO oxidation activity.


2006 ◽  
Vol 924 ◽  
Author(s):  
Guangping Zheng

ABSTRACTUsing molecular dynamics simulation of nanocrystalline (nc) samples with grain size of 10 nm, a reverse martensitic transformation from hexagonal close-packed (hcp) to face-centered cubic (fcc) structure is observed in nc-cobalt and nc-zirconium undergoing plastic deformation. In nc-cobalt hcp-to-fcc transformation is prevalent and deformation twinning is rarely observed. The transformation mechanism involves the motion of Shockley partial dislocation 1/3<1100> in every other (0001)hcp /(111)fcc plane. In nc-zirconium the hcp-to-fcc transformation competes with the deformation twinning. From the simulation results, it is suggested that the interaction among partials should be considered to understand the deformation mechanisms of hcp nc metals.


2012 ◽  
Vol 67 (11) ◽  
pp. 911-914 ◽  
Author(s):  
Z.Q. Yang ◽  
M.F. Chisholm ◽  
L.L. He ◽  
S.J. Pennycook ◽  
H.Q. Ye

2016 ◽  
Vol 22 (6) ◽  
pp. 1244-1250 ◽  
Author(s):  
Jingxu Zheng ◽  
Zhongyuan Luo ◽  
Lida Tan ◽  
Bin Chen

AbstractIn the present study, nano-sized cuboid-shaped particles in Mg–Nd–Y are studied by means of Cs-corrected atomic-scale high-angle annular dark-field scanning transmission electron microscopy. The structure of the cuboid-shaped phase is identified to be yttrium (major component) and neodymium atoms in face-centered cubic arrangement without the participation of Mg. The lattice parameter a=5.15 Å. During isothermal aging at 225°C, Mg3(Nd,Y) precipitates adhere to surface (100) planes of the cuboid-shaped particles with the orientation relationship: $[100]_{{{\rm Mg}_{{\rm 3}} {\rm RE}}} \,/\,\,/\,[100]_{{{\rm Cuboid}}} $ and $[310]_{{{\rm Mg}_{{\rm 3}} {\rm RE}}} \,/\,\,/\,[012]_{{{\rm Cuboid}}} $ . The fully coherent interfaces between the precipitates and the cuboid-shaped phases are reconstructed and categorized into two types: $(400)_{{{\rm Mg}_{{\rm 3}} {\rm RE}}} $ interface and $(200)_{{{\rm Mg}_{{\rm 3}} {\rm RE}}} $ interface.


Sign in / Sign up

Export Citation Format

Share Document