Lightweight epoxy-based abradable seal coating with high bonding strength

2021 ◽  
Vol 69 ◽  
pp. 129-137 ◽  
Author(s):  
Yun-Qi Tong ◽  
Qiu-Sheng Shi ◽  
Mei-Jun Liu ◽  
Guang-Rong Li ◽  
Chang-Jiu Li ◽  
...  
2016 ◽  
Vol 696 ◽  
pp. 151-156 ◽  
Author(s):  
Takeshi Yabutsuka ◽  
Ryoki Karashima ◽  
Shigeomi Takai ◽  
Takeshi Yao

Micropores were formed on the surfaces of stainless steel (SUS) by sandblasting methods and Apatite Nuclei (AN) were formed in the pores. By this treatments, a bioactive SUS was fabricated. Apatite-forming ability of the SUS was evaluated by immersing in an acellular simulated body fluid. Formation of bonelike apatite was induced on the surface of the SUS within 1 day. High bonding strength of the bonelike apatite layer was achieved by a mechanical interlocking effect between the bonelike apatite formed in the pores and the SUS specimen.


2021 ◽  
Vol 898 ◽  
pp. 73-79
Author(s):  
Radek Hermann ◽  
Jakub Hodul ◽  
Aleš Jakubík

This paper deals with the problematics of utilization of waste perlite from production of expanded perlite in polymer-based material. The goal of this paper is to develop repair mortar containing as high amount of waste perlite as possible as substitution for filler. The resulting mortar exhibits very high physical-mechanical properties such as high bonding strength to a large variety of building materials. The microstructure and the re-dispersibility of filler were also studied.


2020 ◽  
Vol 985 ◽  
pp. 16-22
Author(s):  
Sung Hwa Bae ◽  
Joon Young Choi ◽  
Injoon Son

This study investigates a brazing method for manufacturing PbTe thermoelectric modules using a Ag-based filler metal with a melting point of about 650 °C. To improve the bonding strength between the Ag-based brazing layer and the PbTe thermoelectric module, an electroless Ni-P plating layer is formed on the surface of the thermoelectric module as a diffusion barrier layer. The bonding strength of the PbTe thermoelectric module manufactured by the electroless Ni-P plating and Ag-based brazing has a high value of approximately 8.3 MPa. No defects such as pores or cracks were observed at the bonding interface between the thermoelectric element and the brazing layer. Furthermore, because of the high bonding strength of the manufactured thermoelectric module, fractures occur inside the thermoelectric element rather than at the bonding interface. Accordingly, the electroless Ni-P plating and Ag-based brazing method proposed in this study is found to be effective in manufacturing PbTe-based thermoelectric modules with high bonding strength.


Sign in / Sign up

Export Citation Format

Share Document