Plant Polyphenol‐Inspired Crosslinking Strategy toward High Bonding Strength and Mildew Resistance for Soy Protein Adhesives

Author(s):  
Chao Ma ◽  
Huiwen Pang ◽  
Yulin Shen ◽  
Zhenxuan Liang ◽  
Jianzhang Li ◽  
...  
2014 ◽  
Vol 884-885 ◽  
pp. 108-111 ◽  
Author(s):  
Chun Nan Jin ◽  
Shi Cheng Zhang ◽  
Jiu Yin Pang ◽  
Zhen Guo Gao

This paper is mainly aimed at the problem of low bonding strength of soy bean protein adhesive,poor water resistance,with methyl methacrylate and vinyl acetate composite study made with rubber manufacturing class II plywood,meet the national standard,so as to solve the water resistance of soy protein adhesives and bonding strength of.Experiments that 3.5g soy protein, 5g PVA, 30g MMA, 0.3g APS and 100g water, modified soy protein adhesive bonding strength obtained is excellent, and cost reduction.Preparation of soybean protein-acrylate adhesive solid content,viscosity and strength of plywood detection.


2016 ◽  
Vol 696 ◽  
pp. 151-156 ◽  
Author(s):  
Takeshi Yabutsuka ◽  
Ryoki Karashima ◽  
Shigeomi Takai ◽  
Takeshi Yao

Micropores were formed on the surfaces of stainless steel (SUS) by sandblasting methods and Apatite Nuclei (AN) were formed in the pores. By this treatments, a bioactive SUS was fabricated. Apatite-forming ability of the SUS was evaluated by immersing in an acellular simulated body fluid. Formation of bonelike apatite was induced on the surface of the SUS within 1 day. High bonding strength of the bonelike apatite layer was achieved by a mechanical interlocking effect between the bonelike apatite formed in the pores and the SUS specimen.


2021 ◽  
Vol 898 ◽  
pp. 73-79
Author(s):  
Radek Hermann ◽  
Jakub Hodul ◽  
Aleš Jakubík

This paper deals with the problematics of utilization of waste perlite from production of expanded perlite in polymer-based material. The goal of this paper is to develop repair mortar containing as high amount of waste perlite as possible as substitution for filler. The resulting mortar exhibits very high physical-mechanical properties such as high bonding strength to a large variety of building materials. The microstructure and the re-dispersibility of filler were also studied.


2010 ◽  
Vol 139-141 ◽  
pp. 706-709
Author(s):  
Zi Tao Sang ◽  
Shi Feng Zhang ◽  
Qiang Gao ◽  
Jian Zhang Li

In this study, a sodium hydroxide modified soybean protein adhesive (NSP adhesive) was prepared and mixed with phenol-formaldehyde (PF) resin in a ratio of 7:3 to form a compound adhesive (NSPF adhesive), and three-layer plywoods were prepared using the NSP adhesive and the NSPF adhesive. In order to understand the reactions between SP and PF resin during the curing process of NSPF adhesive, the SEM and FTIR spectra were employed to character the adhesives and the bonding strength of the plywoods was measured. The results showed that the bonding strength of the poplar plywood prepared with NSPF reached 1.00 MPa, and met type I plywood requirement in GB/T 17657-1999. There was new absorption peak appear at 1390 cm-1 in the FTIR spectra of NSPF adhesive, indicating that there were -NHCH2- structures generate in NSPF during the curing process in this research.


2019 ◽  
Vol 90 (9-10) ◽  
pp. 1094-1101 ◽  
Author(s):  
Xiaoyun Xu ◽  
Wenfeng Hu ◽  
Qinfei Ke ◽  
Honggang Liu ◽  
Juan Li ◽  
...  

Biodegradable adhesives from nano-chitosan-reinforced unfolded soy protein have been fabricated to potentially reduce environmental pollution and drive a sustainable textile industry. The weak adhesion strength and poor water stability of soy protein films limit their use in the textile industry. In this work, the influence of sodium-dodecyl-sulfonate on unfolding of soy protein, and the reinforcement effects of nano-chitosan on the tensile properties of unfolded soy protein adhesives were investigated. The results demonstrate that the bio-adhesives developed had 157% and 85% increments on tensile strength and water stability compared with unmodified soy protein. Also, dry and wet strength of the pulp/viscose wet-laid nonwovens were increased 43% and over 100% after adhesion, indicating that modified soy protein shows promise for use as a textile bio-adhesive for sustainable industry.


Sign in / Sign up

Export Citation Format

Share Document