Fabrication of Bioactive Stainless Steel by the Function of Apatite Nuclei

2016 ◽  
Vol 696 ◽  
pp. 151-156 ◽  
Author(s):  
Takeshi Yabutsuka ◽  
Ryoki Karashima ◽  
Shigeomi Takai ◽  
Takeshi Yao

Micropores were formed on the surfaces of stainless steel (SUS) by sandblasting methods and Apatite Nuclei (AN) were formed in the pores. By this treatments, a bioactive SUS was fabricated. Apatite-forming ability of the SUS was evaluated by immersing in an acellular simulated body fluid. Formation of bonelike apatite was induced on the surface of the SUS within 1 day. High bonding strength of the bonelike apatite layer was achieved by a mechanical interlocking effect between the bonelike apatite formed in the pores and the SUS specimen.

2007 ◽  
Vol 361-363 ◽  
pp. 709-712 ◽  
Author(s):  
Takeshi Yabutsuka ◽  
Mitsuhiro Hibino ◽  
Takeshi Yao

Apatite nuclei were precipitated in the pores of titanium in simulated body fluid (SBF) and titanium-apatite nuclei composite was obtained. Apatite was induced by the apatite nuclei inside the pores of the composite and apatite layer was formed on the composite surface by soaking in SBF. The apatite layer showed high adhesive strength to the composite due to a mechanical interlocking effect between the composite and the apatite.


2016 ◽  
Vol 705 ◽  
pp. 304-308
Author(s):  
Muhammad Hanis Mohd Tajudin ◽  
Zafirah Tapsir ◽  
Lukman Hakim Ismail ◽  
Syafiqah Saidin

Bioactivity analysis in simulated body fluid (SBF) is an experiment or protocol conducted to evaluate the bioactive properties of a sample without involving cells. The bioactive property is claimed based on the formation of apatite layer after immersion in SBF. This analysis consumes expensive chemical reagents and requires complex procedure in preparing and refreshing the solution. Therefore, the aim of this study was to identify significant alteration of refreshing time in the 1.5× SBF to form an apatite layer on a polydopamine (PDA) grafted stainless steel (SS316L) disk. The SS316L disks were pre-treated and grafted with a PDA layer to equip the bioinert metal surface with a bioactive film. The PDA grafted disks were subjected to bioactivity analysis in SBF for 7 days at different refreshing time (24 h, 48 h, 72 h and not refreshed up to 7 d). The surfaces were then characterised by FTIR, SEM-EDX, and contact angle analyses to determine its chemical composition, morphology and wettability properties. The PDA grafted disks that been subjected to 48 h refreshing time in SBF produced homogenous apatite formation with less agglomeration, closest theoretical Ca/P ratio and high hydrophilicity, suggesting the formation of preferable apatite layer with a reduction in the number of refreshing time.Bioactivity analysis in simulated body fluid (SBF) is an experiment or protocol conducted to evaluate the bioactive properties of a sample without involving cells. The bioactive property is claimed based on the formation of apatite layer after immersion in SBF. This analysis consumes expensive chemical reagents and requires complex procedure in preparing and refreshing the solution. Therefore, the aim of this study was to identify significant alteration of refreshing time in the 1.5× SBF to form an apatite layer on a polydopamine (PDA) grafted stainless steel (SS316L) disk. The SS316L disks were pre-treated and grafted with a PDA layer to equip the bioinert metal surface with a bioactive film. The PDA grafted disks were subjected to bioactivity analysis in SBF for 7 days at different refreshing time (24 h, 48 h, 72 h and not refreshed up to 7 d). The surfaces were then characterised by FTIR, SEM-EDX, and contact angle analyses to determine its chemical composition, morphology and wettability properties. The PDA grafted disks that been subjected to 48 h refreshing time in SBF produced homogenous apatite formation with less agglomeration, closest theoretical Ca/P ratio and high hydrophilicity, suggesting the formation of preferable apatite layer with a reduction in the number of refreshing time.


2014 ◽  
Vol 604 ◽  
pp. 175-179 ◽  
Author(s):  
Lasma Poca ◽  
Arita Dubnika ◽  
Dagnija Loca ◽  
Liga Berzina-Cimdina

In the present study, thein vitrobioactivity of silver-doped hydroxyapatite (HAp/Ag) scaffolds was investigated. HAp/Ag was prepared using two different modified wet precipitation methods. The X-ray powder diffraction (XRD) results showed, that sintered HAp/Ag samples prepared using method (I) contain two phases HAp and Ag, but samples prepared by method (II) contain three different phases - HAp, Ag and AgO. After 2 month incubation period in simulated body fluid (SBF), surface of HAp/Ag scaffolds was coated with bone-like apatite. Thickness of bone-like apatite layer increased from 2 μm up to 32 μm, increasing the incubation period.


10.30544/384 ◽  
2011 ◽  
Vol 17 (1) ◽  
pp. 13-22 ◽  
Author(s):  
Hamid Reza Asgari Bidhendi ◽  
Majid Pouranvari

Titanium alloys and stainless steel 316L are still the most widely used biomaterials for implants despite emerging new materials for this application. There is still someambiguity in corrosion behavior of metals in simulated body fluid (SBF). This paper aims at investigating the corrosion behavior of commercially pure titanium (CP-Ti), Ti–6Al–4V and 316LVM stainless steel (316LVM) in SBF (Hank’s solution) at37 ºC using the cyclic polarization test. Corrosion behavior was described in terms of breakdown potential, the potential and rate ofcorrosion, localized corrosion resistance, andbreakdown repassivation. The effects of anodizing on CP-Ti samples and the passivation on the 316LVM were studied in detail. It was shown that CP-Ti exhibited superior corrosion properties compared to Ti–6Al–4V and 316LVM.


2011 ◽  
Vol 332-334 ◽  
pp. 1951-1954 ◽  
Author(s):  
Jia Horng Lin ◽  
Wen Cheng Chen ◽  
Jin Jia Hu ◽  
Yueh Sheng Chen ◽  
Shih Peng Wen ◽  
...  

Biodegradable polymer has been widely used in surgical suture, dressing, artificial bone and other bone-related applications. Studies have demonstrated that metals, such as titanium, titanium alloys or 316L stainless steel, can be widely used in dental and maxillofacial surgeries. The present study aimed to fabricate a scaffold with a blend of multilayer polylactic acid (PLA) ply yarns with 316L stainless steel (SS) braids, which was then immersed in simulated body fluid (SBF), forming the PLA/SS composite braid with hydroxylapatite deposition. After being immersed in SBF for 14 days, the PLA/SS composite braid was covered with precipitate which was confirmed to be apatite deposition according to surface observation and EDS evaluation.


2017 ◽  
Vol 758 ◽  
pp. 75-80 ◽  
Author(s):  
Takeshi Yabutsuka ◽  
Yasutaka Kidokoro ◽  
Shigeomi Takai ◽  
Takeshi Yao

Ti-15Mo-5Zr-3Al alloy, with lower elastic modulus in comparison with Ti-6Al-4V alloy, was treated with H2SO4 solution to form pores on its surface. In order to provide apatite-forming ability to the alloy, apatite nuclei were precipitated in the pores using simulated body fluid with higher pH value in comparison with the conventional one. By this treatment, a bioactive Ti-15Mo-5Zr-3Al alloy was obtained. The apatite-forming ability of the bioactive Ti-15Mo-5Zr-3Al alloy was evaluated by soaking in SBF. In addition, adhesive strength of the bone-like apatite layer formed in the SBF was measured.


2010 ◽  
Vol 168 (1-3) ◽  
pp. 224-230 ◽  
Author(s):  
Pradnya N. Chavan ◽  
Manjushri M. Bahir ◽  
Ravindra U. Mene ◽  
Megha P. Mahabole ◽  
Rajendra S. Khairnar

2003 ◽  
Vol 254-256 ◽  
pp. 459-462 ◽  
Author(s):  
Kawashita Masakazu ◽  
Xin-Yu Cui ◽  
Hyun Min Kim ◽  
Tadashi Kokubo ◽  
Takashi Nakamura

Sign in / Sign up

Export Citation Format

Share Document