Cold spray additive manufacturing of Invar 36 alloy: microstructure, thermal expansion and mechanical properties

2021 ◽  
Vol 72 ◽  
pp. 39-51
Author(s):  
Chaoyue Chen ◽  
Yingchun Xie ◽  
Longtao Liu ◽  
Ruixin Zhao ◽  
Xiaoli Jin ◽  
...  
Author(s):  
Mostafa Yakout ◽  
M. A. Elbestawi

Recently, additive manufacturing (AM) became a promising technology to manufacture complex structures with acceptable mechanical properties. The laser powder-bed fusion (L-PBF) process is one of the most common AM processes that has been used for producing a wide variety of metals and composites. Invar 36 is an austenite iron-nickel alloy that has a very low coefficient of thermal expansion; therefore, it is a good candidate for the L-PBF process. This chapter covers the state-of-the-art for producing Invar 36 using the L-PBF process. The chapter aims at describing research insights of using metal AM techniques in producing Invar 36 components. Like most of nickel-based alloys, Invar 36 is weldable but hard-to-machine. However, there are some challenges while processing these alloys by laser. This chapter also covers the challenges of using the L-PBF process for producing nickel-based alloys. In addition, it reports the L-PBF conditions that could be used to produce fully dense Invar 36 components with mechanical properties comparable to the wrought Invar 36.


2020 ◽  
pp. 53-70
Author(s):  
Kun Tan ◽  
Sergii Markovych ◽  
Wenjie Hu ◽  
Oleksandr Shorinov ◽  
Yurong Wang

Cold spray technology is a method of deposited metal coatings by high-speed particle impact, especially in the preparation of metal alloy materials (Cu alloys, Ti alloys, Al alloys, Ni-based alloys, Mg alloys, stainless steels, and high-temperature alloys, etc.) The performance is particularly outstanding. The sprayed materials have better mechanical properties, mechanical properties, and service life, such as tensile strength, fatigue strength, and corrosion resistance. Cold spray technology can prepare corrosion-resistant coatings and high-temperature coatings, Wear-resistant coatings, conductive coatings, and anti-oxidation coatings and other functional coatings. From the perspective of process technology and equipment design, cold spray technology can be applied to the field of additive manufacturing technology, which not only reflects the repair function but also the manufacturing function, and applies cold spray technology and repairs the parts produced by additive manufacturing – Selective Laser Melting technology. The defects and problems are of great significance. This article summarizes the repair process and technical characteristics of cold spray technology, and repairs and protects the Cu, Ti, Al, Ni, Mg, and stainless steel and other metals and their alloys from corrosion, fatigue, and wear. The maintenance is reviewed, and the application of combining cold spray technology with additive manufacturing – Selective Laser Melting technology is proposed. Many materials can be used in the field of cold spray technology and Additive Manufacturing – Selective Laser Melting technology. In the communication between the two, the combination of technology and method is of great significance; the influence of spraying parameters of cold spraying technology (such as powder particle shape, spraying angle, spraying distance, critical speed and temperature of particles and substrate, etc.) on spraying effect and efficiency are proposed. Finally, the development of cold spray technology: post-processing of parts, critical speed and numerical simulation are possible.


Sign in / Sign up

Export Citation Format

Share Document