Lot splitting under load-limiting order release in high-variety shops: An assessment by simulation

2018 ◽  
Vol 48 ◽  
pp. 63-72 ◽  
Author(s):  
Matthias Thürer ◽  
Nuno O. Fernandes ◽  
Sílvio Carmo-Silva ◽  
Mark Stevenson
Keyword(s):  
Biomaterials ◽  
2008 ◽  
Vol 29 (35) ◽  
pp. 4691-4697 ◽  
Author(s):  
Mohammad Hamdan Alkhraisat ◽  
Claus Moseke ◽  
Luis Blanco ◽  
Jake E. Barralet ◽  
Enrique Lopez-Carbacos ◽  
...  

2014 ◽  
Vol 31 (10) ◽  
pp. 2844-2856 ◽  
Author(s):  
Filis Kazazi-Hyseni ◽  
Mariana Landin ◽  
Audrey Lathuile ◽  
Gert J. Veldhuis ◽  
Sima Rahimian ◽  
...  

2014 ◽  
Vol 933 ◽  
pp. 860-868
Author(s):  
Muneam Zamzeer Al-Magsoosi

Successful implementation of ERP systems should take full advantage of the access to information, but not be constrained by many of the deficiencies associated with infinite capacity scheduling methodologies. In this paper an algorithm is developed which improves the performance of the ERP system. Lot sizing decisions based on capacity availability are used as an instrument to integrate more effectively capacity requirements planning (CRP) and Material Requirements Planning (MRP). MRP is a planning tool for a sub-set of manufacturing system specially in hierarchal multi-product, multi-period and multi-stage production planning and inventory control system. The Vehicle used for this integration is planned order release (POR) quantity. The algorithm requires minimal deviation from the MRP logic. In this sequential process MRP first issues the action notices and then the algorithm analyses the capacity situation in the work centers. The algorithm scans all planned order release quantities of lower level items in the action bucket before orders are released to the shop. For each item a delta value is computed identifying the degree orders are contributing to capacity problems. This delta is specific to each POR. The POR causing the highest overload and the one passing through the lowest utilized work centers are selected for a lot size decrease, respectively, an increase. After identifying the candidates, a series of checks analyses the suitability of the candidates for that change. The planned order release quantities of more items can be performed. Projected capacity profile after iteration will be updated and capacity requirements over a short duration are smoothed. The experiments are performed with MAP/3000 as a simulation model for this study. The developed algorithm is added to MAP/3000 as additional subroutines. The design of the experiments consists of a base test identifying the significance of different environmental parameters of MRP systems and a main test which performs a detailed evaluation. The results are evaluated using analysis of variance techniques. Most ERP systems built on the historical development of MRP and CRP systems, and the assumption of infinite capacity is affecting the performance of those systems badly. This paper is presenting an algorithm to smooth capacity problems by using the existed capacity.


1988 ◽  
Vol 19 (1) ◽  
pp. 167-189 ◽  
Author(s):  
Gary L. Ragatz ◽  
Vincent A. Mabert

2019 ◽  
Vol 1 (1) ◽  
pp. 1-9
Author(s):  
Rika Kartika Sihotang ◽  
Aditya Wirangga

Penelitian ini bertujuan untuk menerapkan kapasitas waktu produksi yang sesuai dengan menggunakan metode Capacity Requirement Planning  pada Teaching Factory Manufacture Electronics (TFME) Politeknik Negeri Batam. Variable dalam penelitain ini adalah jadwal pesanan (Schedule Of Planned Order Release), pusat kerja (Work Centre), Routing Data (waktu yang digunakan), dan Work Order Status. Pengumpulan data diperoleh dari data dokumen produksi di TFME Politeknik Negeri Batam. Hasil penelitian dapat disimpulkan bahwa pesanan dapat diselesaikan dengan kapasitas perhari yaitu 8 pcs/hari setara 1 unit PCB A4 dengan waktu operasi adalah waktu yang digunakan untuk menyelesaikan permintaan berdasarkan kemampuan kapasitas maximal. Sehingga perumusannya adalah permintaan (demand) dibagi dengan kapasitas produksi terpasang yaitu 165 pcs : 8 pcs/hari = 21 unit dimana 1 unit PCB A4dikerjakan dalam waktu 5,12 jam sehingga untuk menyelesaikan 21 unit menghabiskan waktu selama 107,52 jam = 14 hari, untuk itu berdasarkan kebutuhan penyesuaian kapasitas dalam produksi maka jumlah hari yang dibutuhkan untuk Operation Time (waktu operasi) adalah  selama 14 hari. Kebutuhan waktu aktual adalah konversi dari waktu operasi kedalam satuan menit yaitu 5,12 jam/unit x 21 unit x 60 menit  = 6451 menit = 107,52 jam.tingkat efisiensi dan utilisasi merupakan kondisi actual perfomance dari setiap work centres. Kapasitas yang tersedia dalam periode ini selama 4032 menit untuk menyelesaikan pesanan PCB G-Robo sebanyak 165 pcs, dan waktu aktual yang dibutuhkan untuk menyelesaikan  pesanan tersebut hanya 6451 menit sehingga dengan menggunakan metode CRP ini dapat menyimpan operation cost selama 2419 menit = 40,32 jam = 6 hari kerja sehingga TFME Politeknik Negeri Batam dapat meminimalisir biaya yang diakibatkan dari proses produksi serta pesanan untuk PCB G-Robo juga dapat diselesaikan tepat pada waktunya.


2021 ◽  
Author(s):  
Mohamed Mahmoud Khattab

In this study, two strategies were used to functionalize cellulose nanowhiskers. Firstly, by grafting its surface with β-cyclodextrin (βCD) for developing drug-nanocarrier. Secondly, by conjugating short polymer segments to its surface for reinforcing Poly(Ɛ-Caprolactone) (PCL), in order to develop nanocomposites with promoted properties suitable for regenerative medicine. In addition, the production and recovery of biodegradable bioplastics poly(3-hydroxybutyrate) (P(3HB)) from agro-industrial residues of hemp hurd biomass was also examined. In the first part, a drug-nanocarrier system based on βCD-grafted bacterial cellulose nanowhisker (BCNC-g-βCD) was developed as a prolonged drug release nanocarrier. Antibiotic Ciprofloxacin (CIP) and anticancer drugs; Doxorubicin (DOX) and Paclitaxel (PTX) were conjugated to BCNC-g-βCD as model drugs to form the drug-nanocarrier (BCNC-g-βCD-drug). Compared with un-grafted BCNC, the developed drug-nanocarrier showed significant increase in drug payloads from 495 ±4 to 810 ±7 µg/mg along with radical improvement in the drug release profiles. Initial burst releases was reduced significantly and prolonged and sustained release for (74.5–90%) of drug payload over 4–5.5 days were observed. In addition, an improved drug release performances were pragmatic in acidic pH of 6.4 that mimicked extracellular tumor cells. In vitro drug release data pointed to zero-order kinetic model with estimated zero-order release constants (K0) of 0.68, 0.74, and 0.79 µg drug/h (at pH 6.4, 37°C) for BCNC-g-βCD-CIP, BCNC-g-βCD-DOX and BCNC-g-βCD-PTX nanosystems, respectively. In the second part, the functionalized bacterial cellulose nanowhisker (BCNW-g-βCD-PCL2000) was synthesized. Reinforcing PCL matrix with 4 wt% of the functionalized nanowhisker resulted in bionanocomposite with promoted bulk properties. Compared to neat PCL, the obtained bionanocomposite showed 115% and 51% improvements in tensile strength and Young’s modulus, respectively; 20% increase in hydrophilicity; 7% increase in degradation rate; and 6% decrease in crystallinity. Gas foaming/combined particulate leaching technique is used to develop highly porous strutures having porosity of 86-95% and interconnected macropores with mean pore diameters of 250-420 µm. Porous scaffolds showed compression moduli values of 5.3-9.1 MPa in the range of cancellous bones. In the third part a dual-function PCL scaffold was fabricated. The envisioned drug-laden scaffold would provide adequate structural and mechanical supports for the newly regenerated tissues and simultaneously serve as localized drug delivery system. In this context, reinforced PCL with 4 wt% of BCNW-g-βCD-PCL2000 and 25 wt% of doxorubicin anticancer drug resulted in drugladen bionanocomposite of combined promoted bulk properties. Improvements of 165% and 107% in tensile strength and Young’s modulus, respectively; 31% in hydrophilicity; 10% in degradation rate; and 8°C increases in thermal stability. The obtained drug-laden porous scaffolds showed compressive moduli in the range of 7.2-12.3 MPa. In vitro drug releases fit the first-order release mechanism and occurred in a diffusion-controlled and sustained manner 60 days without obvious burst releases. The scaffolds will ultimately minimize systemic toxicities of drugs, lessen the number of dosing, and diminish the need for removal procedure. The forth study described prospective trials for greener production and extraction of the biodegradable bioplastics poly(3-hydroxybutyrate) P(3HB) from agro-industrial residues of hemp hurd biomass. Results showed that maximum hydrolysis yield of 72.4% was achieved by alkali pretreatment with 2% NaOH at 135°C for 60 min along with two-step enzymatic hydrolysis and ultrasonication. Total hydrolysate sugar concentration of 53.0 g/L was obtained. Under optimum conditions, total P(3HB) production of 13.4 g/L was achieved within 80 h of fermentation. Ultrasonic-assisted sodium dodecyl sulfate (SDS) has showed effectiveness as economic recovery method. It recovered bioplastics directly from the broth cell concentrate with P(3HB) content of 92%. Number average molecular weights (Mn) of recovered bioplastics were in the range of 150–270 kDa with polydispersity index (Mw/Mn) of 2.1–2.4.


2021 ◽  
Author(s):  
Mohamed Mahmoud Khattab

In this study, two strategies were used to functionalize cellulose nanowhiskers. Firstly, by grafting its surface with β-cyclodextrin (βCD) for developing drug-nanocarrier. Secondly, by conjugating short polymer segments to its surface for reinforcing Poly(Ɛ-Caprolactone) (PCL), in order to develop nanocomposites with promoted properties suitable for regenerative medicine. In addition, the production and recovery of biodegradable bioplastics poly(3-hydroxybutyrate) (P(3HB)) from agro-industrial residues of hemp hurd biomass was also examined. In the first part, a drug-nanocarrier system based on βCD-grafted bacterial cellulose nanowhisker (BCNC-g-βCD) was developed as a prolonged drug release nanocarrier. Antibiotic Ciprofloxacin (CIP) and anticancer drugs; Doxorubicin (DOX) and Paclitaxel (PTX) were conjugated to BCNC-g-βCD as model drugs to form the drug-nanocarrier (BCNC-g-βCD-drug). Compared with un-grafted BCNC, the developed drug-nanocarrier showed significant increase in drug payloads from 495 ±4 to 810 ±7 µg/mg along with radical improvement in the drug release profiles. Initial burst releases was reduced significantly and prolonged and sustained release for (74.5–90%) of drug payload over 4–5.5 days were observed. In addition, an improved drug release performances were pragmatic in acidic pH of 6.4 that mimicked extracellular tumor cells. In vitro drug release data pointed to zero-order kinetic model with estimated zero-order release constants (K0) of 0.68, 0.74, and 0.79 µg drug/h (at pH 6.4, 37°C) for BCNC-g-βCD-CIP, BCNC-g-βCD-DOX and BCNC-g-βCD-PTX nanosystems, respectively. In the second part, the functionalized bacterial cellulose nanowhisker (BCNW-g-βCD-PCL2000) was synthesized. Reinforcing PCL matrix with 4 wt% of the functionalized nanowhisker resulted in bionanocomposite with promoted bulk properties. Compared to neat PCL, the obtained bionanocomposite showed 115% and 51% improvements in tensile strength and Young’s modulus, respectively; 20% increase in hydrophilicity; 7% increase in degradation rate; and 6% decrease in crystallinity. Gas foaming/combined particulate leaching technique is used to develop highly porous strutures having porosity of 86-95% and interconnected macropores with mean pore diameters of 250-420 µm. Porous scaffolds showed compression moduli values of 5.3-9.1 MPa in the range of cancellous bones. In the third part a dual-function PCL scaffold was fabricated. The envisioned drug-laden scaffold would provide adequate structural and mechanical supports for the newly regenerated tissues and simultaneously serve as localized drug delivery system. In this context, reinforced PCL with 4 wt% of BCNW-g-βCD-PCL2000 and 25 wt% of doxorubicin anticancer drug resulted in drugladen bionanocomposite of combined promoted bulk properties. Improvements of 165% and 107% in tensile strength and Young’s modulus, respectively; 31% in hydrophilicity; 10% in degradation rate; and 8°C increases in thermal stability. The obtained drug-laden porous scaffolds showed compressive moduli in the range of 7.2-12.3 MPa. In vitro drug releases fit the first-order release mechanism and occurred in a diffusion-controlled and sustained manner 60 days without obvious burst releases. The scaffolds will ultimately minimize systemic toxicities of drugs, lessen the number of dosing, and diminish the need for removal procedure. The forth study described prospective trials for greener production and extraction of the biodegradable bioplastics poly(3-hydroxybutyrate) P(3HB) from agro-industrial residues of hemp hurd biomass. Results showed that maximum hydrolysis yield of 72.4% was achieved by alkali pretreatment with 2% NaOH at 135°C for 60 min along with two-step enzymatic hydrolysis and ultrasonication. Total hydrolysate sugar concentration of 53.0 g/L was obtained. Under optimum conditions, total P(3HB) production of 13.4 g/L was achieved within 80 h of fermentation. Ultrasonic-assisted sodium dodecyl sulfate (SDS) has showed effectiveness as economic recovery method. It recovered bioplastics directly from the broth cell concentrate with P(3HB) content of 92%. Number average molecular weights (Mn) of recovered bioplastics were in the range of 150–270 kDa with polydispersity index (Mw/Mn) of 2.1–2.4.


Sign in / Sign up

Export Citation Format

Share Document