A survey on non-linear optimization problems in wireless sensor networks

2017 ◽  
Vol 82 ◽  
pp. 1-20 ◽  
Author(s):  
R. Asorey-Cacheda ◽  
A.-J. Garcia-Sanchez ◽  
F. Garcia-Sanchez ◽  
J. Garcia-Haro
Author(s):  
Gurdip Singh ◽  
Sanjoy Das ◽  
Shekhar V. Gosavi ◽  
Sandeep Pujar

This chapter introduces ant colony optimization as a method for computing minimum Steiner trees in graphs. Tree computation is achieved when multiple ants, starting out from different nodes in the graph, move towards one another and ultimately merge into a single entity. A distributed version of the proposed algorithm is also described, which is applied to the specific problem of data-centric routing in wireless sensor networks. This research illustrates how tree based graph theoretic computations can be accomplished by means of purely local ant interaction. The authors hope that this work will demonstrate how innovative ways to carry out ant interactions can be used to design effective ant colony algorithms for complex optimization problems.


Aerospace ◽  
2019 ◽  
Vol 6 (3) ◽  
pp. 27 ◽  
Author(s):  
Manuel Pusch ◽  
Daniel Ossmann ◽  
Tamás Luspay

The model-based flight control system design for a highly flexible flutter demonstrator, developed in the European FLEXOP project, is presented. The flight control system includes a baseline controller to operate the aircraft fully autonomously and a flutter suppression controller to stabilize the unstable aeroelastic modes and extend the aircraft’s operational range. The baseline control system features a classical cascade flight control structure with scheduled control loops to augment the lateral and longitudinal axis of the aircraft. The flutter suppression controller uses an advanced blending technique to blend the flutter relevant sensor and actuator signals. These blends decouple the unstable modes and individually control them by scheduled single loop controllers. For the tuning of the free parameters in the defined controller structures, a model-based approach solving multi-objective, non-linear optimization problems is used. The developed control system, including baseline and flutter control algorithms, is verified in an extensive simulation campaign using a high fidelity simulator. The simulator is embedded in MATLAB and a features non-linear model of the aircraft dynamics itself and detailed sensor and actuator descriptions.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Vinay Kumar Singh ◽  
Vidushi Sharma

Wireless sensor networks have gained worldwide attention in recent years due to the advances made in wireless communication. Unequal energy dissipation causes the nodes to fail. The factors causing the unequal energy dissipation are, firstly, the distance between the nodes and base station and, secondly, the distance between the nodes themselves. Using traditional methods, it is difficult to obtain the high precision of solution as the problem is NP hard. The routing in wireless networks is a combinatorial optimization problem; hence, genetic algorithms can provide optimized solution to energy efficient shortest path. The proposed algorithm has its inherent advantage that it keeps the elite solutions in the next generation so as to quickly converge towards the global optima also during path selection; it takes into account the energy balance of the network, so that the life time of the network can be prolonged. The results show that the algorithm is efficient for finding the optimal energy constrained route as they can converge faster than other traditional methods used for combinatorial optimization problems.


Sign in / Sign up

Export Citation Format

Share Document