Tensile deformation behaviors of Zircaloy-4 alloy at ambient and elevated temperatures: In situ neutron diffraction and simulation study

2014 ◽  
Vol 446 (1-3) ◽  
pp. 134-141 ◽  
Author(s):  
Hongjia Li ◽  
Guangai Sun ◽  
Wanchuck Woo ◽  
Jian Gong ◽  
Bo Chen ◽  
...  
2020 ◽  
Vol 6 (37) ◽  
pp. eaaz4748 ◽  
Author(s):  
Chanho Lee ◽  
George Kim ◽  
Yi Chou ◽  
Brianna L. Musicó ◽  
Michael C. Gao ◽  
...  

Single-phase solid-solution refractory high-entropy alloys (HEAs) show remarkable mechanical properties, such as their high yield strength and substantial softening resistance at elevated temperatures. Hence, the in-depth study of the deformation behavior for body-centered cubic (BCC) refractory HEAs is a critical issue to explore the uncovered/unique deformation mechanisms. We have investigated the elastic and plastic deformation behaviors of a single BCC NbTaTiV refractory HEA at elevated temperatures using integrated experimental efforts and theoretical calculations. The in situ neutron diffraction results reveal a temperature-dependent elastic anisotropic deformation behavior. The single-crystal elastic moduli and macroscopic Young’s, shear, and bulk moduli were determined from the in situ neutron diffraction, showing great agreement with first-principles calculations, machine learning, and resonant ultrasound spectroscopy results. Furthermore, the edge dislocation–dominant plastic deformation behaviors, which are different from conventional BCC alloys, were quantitatively described by the Williamson-Hall plot profile modeling and high-angle annular dark-field scanning transmission electron microscopy.


2004 ◽  
Vol 2004 (0) ◽  
pp. 89-90
Author(s):  
Tomoya Shinozaki ◽  
Satoshi Morooka ◽  
Tetsuya Suzuki ◽  
Yo Tomota

Crystals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 101
Author(s):  
Youngsu Kim ◽  
Wookjin Choi ◽  
Hahn Choo ◽  
Ke An ◽  
Ho-Suk Choi ◽  
...  

In situ neutron diffraction was employed to examine the phase transformation behavior of high-Mn steels with different carbon contents (0.1, 0.3, and 0.5 wt.%C). With increasing carbon contents from 0.1 C to 0.5 C, the austenite phase fraction among the constituent phases increased from ~66% to ~98%, and stacking fault energy (SFE) increased from ~0.65 to ~16.5 mJ/m2. The 0.1 C and 0.3 C steels underwent phase transformation from γ-austenite to ε-martensite or α’-martensite during tensile deformation. On the other hand, the 0.5 C steel underwent phase transformation only from γ-austenite to ε-martensite. The 0.3 C steel exhibited a low yield strength, a high strain hardening rate, and the smallest elongation. The high strain hardening of the 0.3 C alloy was due to a rapid phase transformation rate from γ-austenite to ε-martensite. The austenite of 0.5 C steel was strengthened by mechanical twinning during loading process, and the twinning-induced plasticity (TWIP) effect resulted in a large ductility. The 0.5 wt.% carbon addition stabilized the austenite phase by delaying the onset of the ε-martensite phase transformation.


2001 ◽  
Vol 49 (13) ◽  
pp. 2471-2479 ◽  
Author(s):  
S. Harjo ◽  
Y. Tomota ◽  
P. Lukáš ◽  
D. Neov ◽  
M. Vrána ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document