scholarly journals Temperature dependence of elastic and plastic deformation behavior of a refractory high-entropy alloy

2020 ◽  
Vol 6 (37) ◽  
pp. eaaz4748 ◽  
Author(s):  
Chanho Lee ◽  
George Kim ◽  
Yi Chou ◽  
Brianna L. Musicó ◽  
Michael C. Gao ◽  
...  

Single-phase solid-solution refractory high-entropy alloys (HEAs) show remarkable mechanical properties, such as their high yield strength and substantial softening resistance at elevated temperatures. Hence, the in-depth study of the deformation behavior for body-centered cubic (BCC) refractory HEAs is a critical issue to explore the uncovered/unique deformation mechanisms. We have investigated the elastic and plastic deformation behaviors of a single BCC NbTaTiV refractory HEA at elevated temperatures using integrated experimental efforts and theoretical calculations. The in situ neutron diffraction results reveal a temperature-dependent elastic anisotropic deformation behavior. The single-crystal elastic moduli and macroscopic Young’s, shear, and bulk moduli were determined from the in situ neutron diffraction, showing great agreement with first-principles calculations, machine learning, and resonant ultrasound spectroscopy results. Furthermore, the edge dislocation–dominant plastic deformation behaviors, which are different from conventional BCC alloys, were quantitatively described by the Williamson-Hall plot profile modeling and high-angle annular dark-field scanning transmission electron microscopy.

2016 ◽  
Vol 57 (9) ◽  
pp. 1447-1453 ◽  
Author(s):  
Hiroki Adachi ◽  
Yui Karamatsu ◽  
Shota Nakayama ◽  
Tomotaka Miyazawa ◽  
Masugu Sato ◽  
...  

2021 ◽  
Vol 139 ◽  
pp. 107371
Author(s):  
Haiyan He ◽  
Bing Wang ◽  
Dong Ma ◽  
Alexandru D. Stoica ◽  
Zhenduo Wu ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
M. Frank ◽  
S. S. Nene ◽  
Y. Chen ◽  
B. Gwalani ◽  
E. J. Kautz ◽  
...  

AbstractTransformation induced plasticity (TRIP) leads to enhancements in ductility in low stacking fault energy (SFE) alloys, however to achieve an unconventional increase in strength simultaneously, there must be barriers to dislocation motion. While stacking faults (SFs) contribute to strengthening by impeding dislocation motion, the contribution of SF strengthening to work hardening during deformation is not well understood; as compared to dislocation slip, twinning induced plasticity (TWIP) and TRIP. Thus, we used in-situ neutron diffraction to correlate SF strengthening to work hardening behavior in a low SFE Fe40Mn20Cr15Co20Si5 (at%) high entropy alloy, SFE ~ 6.31 mJ m−2. Cooperative activation of multiple mechanisms was indicated by increases in SF strengthening and γ-f.c.c. → ε-h.c.p. transformation leading to a simultaneous increase in strength and ductility. The present study demonstrates the application of in-situ, neutron or X-ray, diffraction techniques to correlating SF strengthening to work hardening.


Sign in / Sign up

Export Citation Format

Share Document