Controlled mechanical ventilation systems in residential buildings: Primary energy balances and financial issues

2017 ◽  
Vol 11 ◽  
pp. 96-107 ◽  
Author(s):  
G. Evola ◽  
A. Gagliano ◽  
L. Marletta ◽  
F. Nocera
2016 ◽  
Vol 34 (Special Issue 2) ◽  
pp. S315-S322
Author(s):  
Gianpiero Evola ◽  
Luigi Marletta ◽  
Antonio Gagliano ◽  
Francesco Nocera ◽  
Desirée Peci

2016 ◽  
Vol 34 (S2) ◽  
pp. S315-S322 ◽  
Author(s):  
Gianpiero Evola ◽  
Luigi Marletta ◽  
Antonio Gagliano ◽  
Francesco Nocera ◽  
Desirée Peci

Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6669
Author(s):  
Jerzy Sowa ◽  
Maciej Mijakowski

Humidity-sensitive, demand-controlled ventilation systems have been in use for many years in regions with oceanic climates. Some attempts have been made to apply this technology in Poland, which has a continental climate. This article evaluates the performance and energy consumption of such a system when applied in an eight-floor, multiunit, residential building, i.e., the virtual reference building described by the National Energy Conservation Agency (NAPE), Poland. Simulations using the computer program CONTAM were performed for the whole heating season based upon the climate in Warsaw. Besides passive stack ventilation, that served as a reference, two ventilation systems were studied: one standard and one “hybrid” system with additional roof fans. This study confirmed that the application of humidity-sensitive, demand-controlled ventilation in multiunit residential buildings in a continental climate (Dfb) led to significant energy savings (up to 11.64 kWh/m2 of primary energy). However, the operation of the system on higher floors was found to be ineffective. Ensuring consistent operation of the system on all floors required supplementary fans. The introduction of a hybrid mode reduced carbon dioxide concentrations by approximately 32% in the units located in the upper part of the building. The energetic effect in such cases depends strongly on the electricity source. In the case of the national energy grid, savings of primary energy would be relatively low, i.e., 1.07 kWh/m2, but in the case of locally produced renewable energy, the energy savings would be equal to 5.18 kWh/m2.


Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 2123 ◽  
Author(s):  
Lamberto Tronchin ◽  
Kristian Fabbri ◽  
Chiara Bertolli

Indoor air quality (IAQ) of buildings is a problem that affects both comfort for occupants and the energy consumption of the structure. Controlled mechanical ventilation systems (CMVs) make it possible to control the air exchange rate. When using CMV systems, it is interesting to investigate the relationship between the useful thermal energy requirements for ventilation and the energy consumption of these systems. This paper addresses whether there is a correlation between these two parameters. The methodology used in this work involves the application of equations of technical Italian regulations UNI/TS 11300 applied to a case study. The case study is represented by a 54 m3 room, which is assumed to have three CMV systems installed (extraction, insertion, insertion and extraction) for twenty different devices available on the market. Afterwards, simulations of useful thermal energy requirements QH,ve and primary energy EP,V were performed according to the electrical power of each fan W and the ventilation flow. The results show that the two values are not linearly correlated: it is not possible to clearly associate the operating cost for CMV systems according to building requirements. The study also shows that CMV systems are particularly efficient for high-performance buildings, where there is no leakage that can be ascribed to windows infiltrations.


Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 34
Author(s):  
Aldona Skotnicka-Siepsiak

Energy-saving ventilation systems are designed to improve the energy efficiency of buildings. Low energy efficiency in buildings poses a considerable problem that needs to be addressed. Mechanical ventilation with heat recovery has gained increased popularity in recent years. Mechanical ventilation has numerous advantages, including easy adjustment and control, high indoor air quality and elimination of indoor pollutants. Mixing ventilation is the most popular type of mechanical ventilation, in particular in residential buildings. Unsteady ventilation is a type of mixing ventilation that involves stronger mixing effects and smaller vertical temperature gradients to improve indoor air quality (IAQ) and minimize energy consumption. This study examines the possibility of controlling and modifying Coanda effect hysteresis (CEH) to generate unsteady flow and simulate the conditions of unsteady mixing ventilation. The experiment was performed on a self-designed test bench at the University of Warmia and Mazury in Olsztyn. It demonstrated that an auxiliary nozzle can be applied at the diffuser outlet to control CEH and the angles at which the air jet becomes attached to and separated from the flat plate positioned directly behind the nozzle. The study proposes an innovative mixing ventilation system that relies on CEH. The potential of the discussed concept has not been recognized or deployed in practice to date. This is the first study to confirm that an auxiliary nozzle by the diffuser outlet can be operated in both injection and suction mode to control CEH. In the future, the results can be used to design a new type of nozzles for unsteady ventilation systems that are based on CEH control.


Author(s):  
Angel Tlatelpa-Becerro ◽  
Ramiro Rico-Martínez ◽  
Gustavo Urquiza-Beltrán ◽  
Elva Lilia Reynoso-Jardón

A solar chimney configuration consisting of three air flow channels divided by two metallic plate, placed in the center of the chimney between two acrylic covers, leading to symmetric air flow, is proposed as an alternative for the design of natural ventilation systems for buildings in tropical and subtropical climatic zones The solar chimney dimensions are 2.0 m height, 1.0 m width, and gap between channels of 0.30 m. These dimensions are appropriate for the design of ventilation systems for residential buildings in central México. A Numerical simulation using the global mass and energy balances in steady state was utilized to evaluate the efficacy of the proposed configuration. The temperature profiles, calculated for a typical hot day in a tropical region, reveal that the configuration is more efficient than the single channel chimney, achieving thermal efficiency values near 75%. This solar chimney configuration can be used with better results than the traditional design as an alternative for natural ventilation systems in residential buildings without a significant increase in the cost of the residence investment.


2020 ◽  
Vol 191 (2) ◽  
pp. 202-208
Author(s):  
Martin Jiránek ◽  
Veronika Kačmaříková

Abstract An analysis is presented of the ability of balanced mechanical ventilation systems to reduce the radon concentration in residential buildings efficiently. The analysis takes into account the following parameters: radon supply rate into the building, ventilation intensity, required indoor radon concentration and energy consumption. It is shown that the applicability of ventilation systems is limited mainly by energy consumption. Ventilation systems can be considered energetically acceptable if the ventilation intensity does not exceed 0.6 h−1, i.e. radon supply rate should not exceed 60 Bq/m3h for a required indoor radon concentration of 100 Bq/m3. Energy consumption can be significantly reduced by operating the ventilation system in a cyclic mode. Simulating the behavior of ventilation systems in time has been found as a useful tool for their design. In order to express by one parameter energy consumption and radon reduction, a completely new quantity—the ‘radon-related energy need’ has been proposed.


Sign in / Sign up

Export Citation Format

Share Document