Synthesis of sustainable lightweight foamed concrete using palm oil fuel ash as a cement replacement material

2021 ◽  
Vol 35 ◽  
pp. 102047
Author(s):  
Ahmed Mahmoud Alnahhal ◽  
U. Johnson Alengaram ◽  
Sumiani Yusoff ◽  
Ramesh Singh ◽  
Mohammed K.H. Radwan ◽  
...  
2018 ◽  
Vol 7 (4.30) ◽  
pp. 350 ◽  
Author(s):  
Sufian Kamaruddin ◽  
Wan Inn Goh ◽  
Ashfaque Ahmed Jhatial ◽  
Muhammad Tahir Lakhiar

Malaysia faces three major environmental problems, out of which solid waste and management is one of them. Palm Oil Fuel Ash (POFA) and eggshells are two agro-food waste materials which are produced in enormous quantities in Malaysia. Due to the characteristics possessed by eggshells and POFA, these waste materials can potentially be utilized in the production as cement replacement, reducing the use of cement which is one of the major production of Carbon Dioxide (CO2) gas emissions. This study was conducted to determine the chemical and fresh state properties of foamed concrete incorporating POFA and eggshell ash (ESA) as cement replacement. Based upon the results, it was observed that the increase in usage amount of POFA and ESA as cement replacement, the workability of foamed concrete reduced without blocking. For the chemical analysis result shows the POFA which had high amount of silicon dioxide and ESA having large amount of calcium oxide were compatible and could be used together as cement replacement. The use of ESA and POFA as cement replacement to reduce the cement consumption with various percentage of ESA (0% - 15%) and POFA (20% - 35%) in 1800 kg/m3 density of foamed concrete.


2018 ◽  
Vol 172 ◽  
pp. 1476-1485 ◽  
Author(s):  
Elnaz Khankhaje ◽  
Mahdi Rafieizonooz ◽  
Mohd Razman Salim ◽  
Rawid Khan ◽  
Jahangir Mirza ◽  
...  

2021 ◽  
Vol 1200 (1) ◽  
pp. 012001
Author(s):  
A S Nurfarhanna ◽  
A Suraya Hani ◽  
O Mohamad Hairi ◽  
J Zalipah ◽  
AH Noor Azlina ◽  
...  

Abstract Railway’s concrete sleepers demand high consumption of cement which generates higher energy assumption and carbon emission. Meanwhile, in Malaysia, around 100 tonnes of palm oil fuel ash (POFA) were disposed of in the landfill, which endangering environmental health. However, this POFA have pozzolanic properties that can be employed as cementitious material. Therefore, this study aimed to produce a sustainable concrete sleeper by using POFA as a cement replacement material focusing on the compressive strength and water absorption performance. Concrete samples with a strength grade of 55MPa and w/c of 0.35 were prepared with three design mixes containing 0% (control), 20%(POFA20), and 40%(POFA40) of POFA. For the compressive strength test, a compression machine was used. Meanwhile, the water absorption was measured at atmospheric pressure. Both tests were conducted at 7 and 28 days of curing age. The results show that as the curing age increases, their water absorption and compressive strength improves, indicating a pozzolanic reaction. In terms of POFA content, the water absorption increases by 14% and 54% for POFA20 and POFA40, respectively. Meanwhile, the compressive strength reduced by 39% for POFA20 and 67% for POFA40. Since POFA20 meets the standards, it is however applicable in slab tracks.


2020 ◽  
Vol 158 ◽  
pp. 03005 ◽  
Author(s):  
G.A. Jokhio ◽  
H.M. Hamada ◽  
A.M. Humada ◽  
Y Gul ◽  
Abid Abu-Tair

Palm oil fuel ash (POFA) is a by-product waste material from palm oil with many economic and environmental benefits. A lack of enough information on the advantages of POFA in the concrete production in various proportions was the main cause to carry out this work. This paper shows advantages of POFA as a partial replacement of cement in concrete production, especially cement mortar. The data collection has been done from the literature review related to the use of POFA as partial cement replacement in the production of cement concrete and mortar. Therefore, this paper can potentially become a guide for researchers and manufacturers to use POFA in various proportions to replace the ordinary Portland cement (OPC) in cement concrete and mortar. The positive and negative impact resulting from this material has been discussed carefully. This study recommends that researchers and academics should perform more experimental works in order to illustrate the desired benefits from POFA as cement replacement, thus mitigate the adverse environmental impacts of cement.


2015 ◽  
Vol 815 ◽  
pp. 29-33 ◽  
Author(s):  
Liyana Ahmad Sofri ◽  
Mohd Zulham Affandi Mohd Zahid ◽  
Nur Fitriah Isa ◽  
Muhammad Azizi Azizan ◽  
Muhammad Munsif Ahmad ◽  
...  

Palm Oil Fuel Ash (POFA) is one of the solid waste in Malaysia and had trouble with the ash removal. Therefore, the use of waste oil palm ash can overcome the problem of solid waste. POFA is a pozzolanic material and it can act as a replacement of cement (OPC) to produce concrete with higher strength and low cost. POFA quality will increase as the range made up to a medium level of fineness in the size of 50 microns. POFA used to replace OPC is 0%, 10%, 30% and 50% by weight percent of OPC. POFA concrete compressive strength will be tested after a curing process that concrete age of 7 days and 28 days. POFA concrete density is also tested and compared with OPC concrete. Results showed that compressive strength POFA lower than normal concrete. On the other hand, the replacement of cement by 10% POFA shows a record high in compressive strength compared with other POFA mixing at the age of 7 days and 28 days. Fineness pozzolanic POFA is the best material and can be used as a cement replacement alternative.


Sign in / Sign up

Export Citation Format

Share Document