Sensitivity analysis linked to multi-objective optimization for adjustments of light-shelves design parameters in response to visual comfort and thermal energy performance

2021 ◽  
pp. 102996
Author(s):  
Ali Ahmed Salem Bahdad ◽  
Sharifah Fairuz Syed Fadzil ◽  
Hilary Omatule Onubi ◽  
Saleh Ahmed Ben Lasod
2019 ◽  
Vol 142 (2) ◽  
Author(s):  
Qiming Liu ◽  
Xingfu Wu ◽  
Xu Han ◽  
Jie Liu ◽  
Zheyi Zhang ◽  
...  

Abstract In vehicle collision accidents, an occupant restraint system (ORS) is crucial to protect the human body from injury, and it commonly involves a large number of design parameters. However, it is very difficult to quantify the importance of design parameters and determine them in the ORS design process. Therefore, an approach of the combination of the proposed approximate sensitivity analysis (SA) method and the interval multi-objective optimization design is presented to reduce craniocerebral injury and improve ORS protection performance. First, to simulate the vehicle collision process and obtain the craniocerebral injury responses, the integrated finite element model of vehicle-occupant (IFEM-VO) is established by integrating the vehicle, dummy, seatbelt, airbag, etc. Then, the proposed approximate SA method is used to quantify the importance ranking of design parameters and ignore the effects of some nonessential parameters. In the SA process, the Kriging metamodel characterizing the relationships between design parameters and injury responses is fitted to overcome the time-consuming disadvantage of IFEM-VO. Finally, according to the results of SA, considering the influence of uncertainty, an interval multi-objective optimization design is implemented by treating the brain injury criteria (BRIC, BrIC) as the objectives and regarding the head injury criterion (HIC) and the rotational injury criterion (RIC) as the constraints. Comparison of the results before and after optimization indicates that the maximum values of the translational and rotational accelerations are greatly reduced, and the ORS protection performance is significantly improved. This study provides an effective way to improve the protection performance of vehicle ORS under uncertainty.


Author(s):  
Qianhao Xiao ◽  
Jun Wang ◽  
Boyan Jiang ◽  
Weigang Yang ◽  
Xiaopei Yang

In view of the multi-objective optimization design of the squirrel cage fan for the range hood, a blade parameterization method based on the quadratic non-uniform B-spline (NUBS) determined by four control points was proposed to control the outlet angle, chord length and maximum camber of the blade. Morris-Mitchell criteria were used to obtain the optimal Latin hypercube sample based on the evolutionary operation, and different subsets of sample numbers were created to study the influence of sample numbers on the multi-objective optimization results. The Kriging model, which can accurately reflect the response relationship between design variables and optimization objectives, was established. The second-generation Non-dominated Sorting Genetic algorithm (NSGA-II) was used to optimize the volume flow rate at the best efficiency point (BEP) and the maximum volume flow rate point (MVP). The results show that the design parameters corresponding to the optimization results under different sample numbers are not the same, and the fluctuation range of the optimal design parameters is related to the influence of the design parameters on the optimization objectives. Compared with the prototype, the optimized impeller increases the radial velocity of the impeller outlet, reduces the flow loss in the volute, and increases the diffusion capacity, which improves the volume flow rate, and efficiency of the range hood system under multiple working conditions.


Author(s):  
Vahid Tahmasbi ◽  
Majid Ghoreishi ◽  
Mojtaba Zolfaghari

The bone drilling process is very prominent in orthopedic surgeries and in the repair of bone fractures. It is also very common in dentistry and bone sampling operations. Due to the complexity of bone and the sensitivity of the process, bone drilling is one of the most important and sensitive processes in biomedical engineering. Orthopedic surgeries can be improved using robotic systems and mechatronic tools. The most crucial problem during drilling is an unwanted increase in process temperature (higher than 47 °C), which causes thermal osteonecrosis or cell death and local burning of the bone tissue. Moreover, imposing higher forces to the bone may lead to breaking or cracking and consequently cause serious damage. In this study, a mathematical second-order linear regression model as a function of tool drilling speed, feed rate, tool diameter, and their effective interactions is introduced to predict temperature and force during the bone drilling process. This model can determine the maximum speed of surgery that remains within an acceptable temperature range. Moreover, for the first time, using designed experiments, the bone drilling process was modeled, and the drilling speed, feed rate, and tool diameter were optimized. Then, using response surface methodology and applying a multi-objective optimization, drilling force was minimized to sustain an acceptable temperature range without damaging the bone or the surrounding tissue. In addition, for the first time, Sobol statistical sensitivity analysis is used to ascertain the effect of process input parameters on process temperature and force. The results show that among all effective input parameters, tool rotational speed, feed rate, and tool diameter have the highest influence on process temperature and force, respectively. The behavior of each output parameters with variation in each input parameter is further investigated. Finally, a multi-objective optimization has been performed considering all the aforementioned parameters. This optimization yielded a set of data that can considerably improve orthopedic osteosynthesis outcomes.


Sign in / Sign up

Export Citation Format

Share Document