Effectiveness of virtual reality on balance ability in individuals with incomplete spinal cord injury: A systematic review

2020 ◽  
Vol 72 ◽  
pp. 322-327
Author(s):  
Anas R. Alashram ◽  
Elvira Padua ◽  
Ahmad K. Hammash ◽  
Mauro Lombardo ◽  
Giuseppe Annino
2021 ◽  
Author(s):  
◽  
B. A. Orsatti-Sánchez

This systematic review (SR) analyzed the effectiveness of interventions using virtual reality (VR) technology as a neurorehabilitation therapy in people with spinal cord injury (SCI). The SR was developed under the guidelines of the PRISMA statement and the recommendations of the Cochrane Collaboration, along with the PEDro and National Institute of Health scales to assess the risk of bias and methodological quality. The Cochrane, IEEE, BVS/LILACS, MEDLINE/PubMed, and Web of Science databases were browsed to identify studies that, between 2010 and 2020, evaluated the efficacy of these therapies. Out of 353 retrieved studies, 11 were finally selected after the application of the defined inclusion and exclusion criteria. These articles presented good methodological quality as they were mostly controlled clinical trials that analyzed mixed therapies with conventional therapies. Interventions based on non-immersive or immersive VR technology that achieved functional motor, balance, and psycho-emotional health improvement with positive effects on motivation, self-confidence, commitment, and active participation were identified in a total sample of 155 SCI patients. It was concluded that such VR technology is an effective tool of neurorehabilitation complementary to conventional therapies, which promotes functional improvement in SCI patients both in the clinic and at home.


2020 ◽  
Vol 9 (9) ◽  
pp. 2861
Author(s):  
Amaranta De Miguel-Rubio ◽  
M. Dolores Rubio ◽  
Alejandro Salazar ◽  
Jose A. Moral-Munoz ◽  
Francisco Requena ◽  
...  

Virtual reality (VR) is an emerging tool used in the neurological rehabilitation of patients with spinal cord injury (SCI), focused on recovering balance, mobility, and motor function, among other functional outcomes. The main objective of this study was to analyze the effectiveness of VR systems to recover balance in patients with SCI. The literature search was performed between October and December 2019 in the following databases: Embase, Web of Science, CINAHL, Scopus, Medline, Physiotherapy Evidence Database (PEDro), PubMed, and the Cochrane Central Register of Controlled Trials. The methodological quality of each study was assessed using the Spinal Cord Injury Rehabilitation Evidence (SCIRE) system and the PEDro scale, while the risk of bias was analyzed by the Cochrane Collaboration’s tool. A total of 12 studies, involving 188 participants, were included in the systematic review, of which two were included in the meta-analysis. Statistical analysis showed favorable results for balance measured by the modified Functional Reach Test (standardized mean difference (SMD) = 3.42; 95% confidence interval: 2.54 to 4.29) and by the t-shirt test (SMD= −2.29; 95% confidence interval: −3.00 to −1.59). The results showed that VR interventions provided potential benefits, in addition to conventional physical therapy, to recover balance in patients with SCI.


2016 ◽  
Vol 6 (8) ◽  
pp. 822-841 ◽  
Author(s):  
Christian Fisahn ◽  
Mirko Aach ◽  
Oliver Jansen ◽  
Marc Moisi ◽  
Angeli Mayadev ◽  
...  

Study Design Systematic review. Clinical Questions (1) When used as an assistive device, do wearable exoskeletons improve lower extremity function or gait compared with knee-ankle-foot orthoses (KAFOs) in patients with complete or incomplete spinal cord injury? (2) When used as a rehabilitation device, do wearable exoskeletons improve lower extremity function or gait compared with other rehabilitation strategies in patients with complete or incomplete spinal cord injury? (3) When used as an assistive or rehabilitation device, are wearable exoskeletons safe compared with KAFO for assistance or other rehabilitation strategies for rehabilitation in patients with complete or incomplete spinal cord injury? Methods PubMed, Cochrane, and Embase databases and reference lists of key articles were searched from database inception to May 2, 2016, to identify studies evaluating the effectiveness of wearable exoskeletons used as assistive or rehabilitative devices in patients with incomplete or complete spinal cord injury. Results No comparison studies were found evaluating exoskeletons as an assistive device. Nine comparison studies (11 publications) evaluated the use of exoskeletons as a rehabilitative device. The 10-meter walk test velocity and Spinal Cord Independence Measure scores showed no difference in change from baseline among patients undergoing exoskeleton training compared with various comparator therapies. The remaining primary outcome measures of 6-minute walk test distance and Walking Index for Spinal Cord Injury I and II and Functional Independence Measure–Locomotor scores showed mixed results, with some studies indicating no difference in change from baseline between exoskeleton training and comparator therapies, some indicating benefit of exoskeleton over comparator therapies, and some indicating benefit of comparator therapies over exoskeleton. Conclusion There is no data to compare locomotion assistance with exoskeleton versus conventional KAFOs. There is no consistent benefit from rehabilitation using an exoskeleton versus a variety of conventional methods in patients with chronic spinal cord injury. Trials comparing later-generation exoskeletons are needed.


Sign in / Sign up

Export Citation Format

Share Document