Effect of hydrogen addition on the laminar premixed combustion characteristics the main components of natural gas

2019 ◽  
Vol 92 (4) ◽  
pp. 1178-1190 ◽  
Author(s):  
Fei Ren ◽  
Huaqiang Chu ◽  
Longkai Xiang ◽  
Weiwei Han ◽  
Mingyan Gu
Author(s):  
P. Gokulakrishnan ◽  
M. J. Ramotowski ◽  
G. Gaines ◽  
C. Fuller ◽  
R. Joklik ◽  
...  

Dry low Emissions (DLE) systems employing lean, premixed combustion have been successfully used with natural gas in combustion turbines to meet stringent emissions standards. However, the burning of liquid fuels in DLE systems is still a challenging task due to the complexities of fuel vaporization and air premixing. Lean, Premixed, Prevaporized (LPP) combustion has always provided the promise of obtaining low pollutant emissions while burning liquid fuels such as kerosene and fuel oil. Because of the short ignition delay times of these fuels at elevated temperatures, the autoignition of vaporized higher hydrocarbons typical of most practical liquid fuels has proven difficult to overcome when burning in lean, premixed mode. To avoid this autoignition problem, developers of LPP combustion systems have focused mainly on designing premixers and combustors that permit rapid mixing and combustion of fuels before spontaneous ignition of the fuel can occur. However, none of the reported works in the literature has looked at altering fuel combustion characteristics in order to delay the onset of ignition in lean, premixed combustion systems. The work presented in this paper describes the development of a patented low-NOx LPP system for combustion of liquid fuels which modifies the fuel rather than the combustion hardware in order to achieve LPP combustion. In the initial phase of the development, laboratory-scale experiments were performed to study the combustion characteristics, such as ignition delay time and NOx formation, of the liquids fuels that were vaporized into gaseous form in the presence of nitrogen diluent. In phase two, an LPP combustion system was commissioned to perform pilot-scale tests on commercial turbine combustor hardware. These pilot-scale tests were conducted at typical compressor discharge temperatures and at both atmospheric and high pressures. In this study, vaporization of the liquid fuel in an inert environment has been shown to be a viable method for delaying autoignition and for generating a gaseous fuel stream with characteristics similar to natural gas. Tests conducted in both atmospheric and high pressure combustor rigs utilizing swirl-stabilized burners designed for natural gas demonstrated operation similar to that obtained when burning natural gas. Emissions levels were similar for both the LPP fuels (fuel oil #1 and #2) and natural gas, with any differences ascribed to the fuel-bound nitrogen present in the liquid fuels. Extended lean operation was observed for the liquid fuels as a result of the wider lean flammability range for these fuels compared with natural gas. Premature ignition of the LPP fuel was controlled by the level of inert gas in the vaporization process.


Author(s):  
Ségolène Gauthier ◽  
Etienne Lebas ◽  
Dominique Baillis

Within the context of reducing the green house gas emissions, substituting hydrogen for natural gas could have a great environmental impact, but hydrogen has different combustion characteristics than natural gas. This paper reports results of experimental tests of premixed combustion of natural gas-hydrogen mixtures in a porous burner made of open cell metallic foam. The technology of porous radiant burners shows environmental and economical advantages compared to traditional diffusion flame burners. The tests showed that substituting natural gas for hydrogen in a porous burner reduces the pollutant emissions of CO and NOx and the quantity of CO2 produced. For specific powers below 500 kW/m2, the emissions were below the "Blue Angel" label values. But working conditions are limited by hydrogen addition and the equivalence ratio has to be lowered to prevent flashback. The radiant combustion mode is more difficult to obtain with mixtures containing hydrogen and it disappears completely for mixtures with more than 80% vol. hydrogen.


Author(s):  
P. Gokulakrishnan ◽  
M. J. Ramotowski ◽  
G. Gaines ◽  
C. Fuller ◽  
R. Joklik ◽  
...  

Dry low emission (DLE) systems employing lean, premixed combustion have been successfully used with natural gas in combustion turbines to meet stringent emission standards. However, the burning of liquid fuels in DLE systems is still a challenging task due to the complexities of fuel vaporization and air premixing. Lean, premixed, and prevaporized (LPP) combustion has always provided the promise of obtaining low pollutant emissions while burning liquid fuels, such as kerosene and fuel oil. Because of the short ignition delay times of these fuels at elevated temperatures, the autoignition of vaporized higher hydrocarbons typical of most practical liquid fuels has been proven difficult to overcome when burning in a lean, premixed mode. To avoid this autoignition problem, developers of LPP combustion systems have focused mainly on designing premixers and combustors that permit rapid mixing and combustion of fuels before spontaneous ignition of the fuel can occur. However, none of the reported works in the literature has looked at altering fuel combustion characteristics in order to delay the onset of ignition in lean, premixed combustion systems. The work presented in this paper describes the development of a patented low NOx LPP system for combustion of liquid fuels, which modifies the fuel rather than the combustion hardware in order to achieve LPP combustion. In the initial phase of the development, laboratory-scale experiments were performed to study the combustion characteristics, such as ignition delay time and NOx formation, of the liquid fuels that were vaporized into gaseous form in the presence of nitrogen diluent. In the second phase, a LPP combustion system was commissioned to perform pilot-scale tests on commercial turbine combustor hardware. These pilot-scale tests were conducted at typical compressor discharge temperatures and at both atmospheric and high pressures. In this study, vaporization of the liquid fuel in an inert environment has been shown to be a viable method for delaying autoignition and for generating a gaseous fuel stream with characteristics similar to natural gas. Tests conducted in both atmospheric and high pressure combustor rigs utilizing swirl-stabilized burners designed for natural gas demonstrated an operation similar to that obtained when burning natural gas. Emission levels were similar for both the LPP fuels (fuel oils 1 and 2) and natural gas, with any differences ascribed to the fuel-bound nitrogen present in the liquid fuels. An extended lean operation was observed for the liquid fuels as a result of the wider lean flammability range for these fuels compared to natural gas.


2020 ◽  
Author(s):  
Digdo Listyadi Setyadi ◽  
Nasrul Ilminnafik ◽  
Hary Sutjahjono ◽  
Tri Vicca Kusumadewi ◽  
Radinal Raka

Sign in / Sign up

Export Citation Format

Share Document