A Novel Low NOx Lean, Premixed, and Prevaporized Combustion System for Liquid Fuels

Author(s):  
P. Gokulakrishnan ◽  
M. J. Ramotowski ◽  
G. Gaines ◽  
C. Fuller ◽  
R. Joklik ◽  
...  

Dry low emission (DLE) systems employing lean, premixed combustion have been successfully used with natural gas in combustion turbines to meet stringent emission standards. However, the burning of liquid fuels in DLE systems is still a challenging task due to the complexities of fuel vaporization and air premixing. Lean, premixed, and prevaporized (LPP) combustion has always provided the promise of obtaining low pollutant emissions while burning liquid fuels, such as kerosene and fuel oil. Because of the short ignition delay times of these fuels at elevated temperatures, the autoignition of vaporized higher hydrocarbons typical of most practical liquid fuels has been proven difficult to overcome when burning in a lean, premixed mode. To avoid this autoignition problem, developers of LPP combustion systems have focused mainly on designing premixers and combustors that permit rapid mixing and combustion of fuels before spontaneous ignition of the fuel can occur. However, none of the reported works in the literature has looked at altering fuel combustion characteristics in order to delay the onset of ignition in lean, premixed combustion systems. The work presented in this paper describes the development of a patented low NOx LPP system for combustion of liquid fuels, which modifies the fuel rather than the combustion hardware in order to achieve LPP combustion. In the initial phase of the development, laboratory-scale experiments were performed to study the combustion characteristics, such as ignition delay time and NOx formation, of the liquid fuels that were vaporized into gaseous form in the presence of nitrogen diluent. In the second phase, a LPP combustion system was commissioned to perform pilot-scale tests on commercial turbine combustor hardware. These pilot-scale tests were conducted at typical compressor discharge temperatures and at both atmospheric and high pressures. In this study, vaporization of the liquid fuel in an inert environment has been shown to be a viable method for delaying autoignition and for generating a gaseous fuel stream with characteristics similar to natural gas. Tests conducted in both atmospheric and high pressure combustor rigs utilizing swirl-stabilized burners designed for natural gas demonstrated an operation similar to that obtained when burning natural gas. Emission levels were similar for both the LPP fuels (fuel oils 1 and 2) and natural gas, with any differences ascribed to the fuel-bound nitrogen present in the liquid fuels. An extended lean operation was observed for the liquid fuels as a result of the wider lean flammability range for these fuels compared to natural gas.

Author(s):  
P. Gokulakrishnan ◽  
M. J. Ramotowski ◽  
G. Gaines ◽  
C. Fuller ◽  
R. Joklik ◽  
...  

Dry low Emissions (DLE) systems employing lean, premixed combustion have been successfully used with natural gas in combustion turbines to meet stringent emissions standards. However, the burning of liquid fuels in DLE systems is still a challenging task due to the complexities of fuel vaporization and air premixing. Lean, Premixed, Prevaporized (LPP) combustion has always provided the promise of obtaining low pollutant emissions while burning liquid fuels such as kerosene and fuel oil. Because of the short ignition delay times of these fuels at elevated temperatures, the autoignition of vaporized higher hydrocarbons typical of most practical liquid fuels has proven difficult to overcome when burning in lean, premixed mode. To avoid this autoignition problem, developers of LPP combustion systems have focused mainly on designing premixers and combustors that permit rapid mixing and combustion of fuels before spontaneous ignition of the fuel can occur. However, none of the reported works in the literature has looked at altering fuel combustion characteristics in order to delay the onset of ignition in lean, premixed combustion systems. The work presented in this paper describes the development of a patented low-NOx LPP system for combustion of liquid fuels which modifies the fuel rather than the combustion hardware in order to achieve LPP combustion. In the initial phase of the development, laboratory-scale experiments were performed to study the combustion characteristics, such as ignition delay time and NOx formation, of the liquids fuels that were vaporized into gaseous form in the presence of nitrogen diluent. In phase two, an LPP combustion system was commissioned to perform pilot-scale tests on commercial turbine combustor hardware. These pilot-scale tests were conducted at typical compressor discharge temperatures and at both atmospheric and high pressures. In this study, vaporization of the liquid fuel in an inert environment has been shown to be a viable method for delaying autoignition and for generating a gaseous fuel stream with characteristics similar to natural gas. Tests conducted in both atmospheric and high pressure combustor rigs utilizing swirl-stabilized burners designed for natural gas demonstrated operation similar to that obtained when burning natural gas. Emissions levels were similar for both the LPP fuels (fuel oil #1 and #2) and natural gas, with any differences ascribed to the fuel-bound nitrogen present in the liquid fuels. Extended lean operation was observed for the liquid fuels as a result of the wider lean flammability range for these fuels compared with natural gas. Premature ignition of the LPP fuel was controlled by the level of inert gas in the vaporization process.


Author(s):  
P. Gokulakrishnan ◽  
C. C. Fuller ◽  
R. G. Joklik ◽  
M. S. Klassen

Single digit NOx emission targets as part of gas turbine design criteria require highly accurate modeling of the various NOx formation pathways. The concept of lean, premixed combustion is adopted in various gas turbine combustor designs, which achieves lower NOx levels by primarily lowering the flame temperature. At these conditions, the post-flame thermal-NOx pathway contribution to the total NOx can be relatively small compared to that from the prompt-NOx and the N2O-route, which are enhanced by the super-equilibrium radical pathway at the flame front. In addition, new sources of natural gas fuel (e.g., imported LNG) with widely varying chemical compositions including higher order hydrocarbon components, impact flame stability, lean blow-out limits and emissions in existing lean premixed combustion systems. Also, the presence of higher order hydrocarbons can increase the risk of flashback induced by autoignition in the premixing section of the combustor. In this work a detailed chemical kinetic model was developed for natural gas fuels that consist of CH4, C2H6, C3H8, nC4H10, iC4H10, and small amounts of nC5H12, iC5H12 and nC6H14 in order to predict ignition behavior at typical gas turbine premixing conditions and to predict CO and NOx emissions at lean premixed combustion conditions. The model was validated for different NOx-pathways using low and high pressure laminar premixed flame data. The model was also extended to include a vitiated kinetic scheme to account for the influence of exhaust gas recirculation on fuel oxidation. The model was employed in a chemical reactor network to simulate a laboratory scale lean premixed combustion system to predict CO and NOx. The current kinetic mechanism demonstrates good predictive capability for NOx emissions at lower temperatures typical of practical lean premixed combustion systems.


Author(s):  
K. O. Smith ◽  
A. C. Holsapple ◽  
H. K. Mak ◽  
L. Watkins

The experimental results from the rig testing of an ultra-low NOx, natural gas-fired combustor for an 800 to 1000 kw gas turbine are presented. The combustor employed lean-premixed combustion to reduce NOx emissions and variable geometry to extend the range over which low emissions were obtained. Testing was conducted using natural gas and methanol. Testing at combustor pressures up to 6 atmospheres showed that ultra-low NOx emissions could be achieved from full load down to approximately 70% load through the combination of lean-premixed combustion and variable primary zone airflow.


Author(s):  
Iarno Brunetti ◽  
Giovanni Riccio ◽  
Nicola Rossi ◽  
Alessandro Cappelletti ◽  
Lucia Bonelli ◽  
...  

The use of hydrogen as derived fuel for low emission gas turbine is a crucial issue of clean coal technology power plant based on IGCC (Integrated Gasification Combined Cycle) technology. Control of NOx emissions in gas turbines supplied by natural gas is effectively achieved by lean premixed combustion technology; conversely, its application to NOx emission reduction in high hydrogen content fuels is not a reliable practice yet. Since the hydrogen premixed flame is featured by considerably higher flame speed than natural gas, very high air velocity values are required to prevent flash-back phenomena, with obvious negative repercussions on combustor pressure drop. In this context, the characterization of hydrogen lean premixed combustion via experimental and modeling analysis has a special interest for the development of hydrogen low NOx combustors. This paper describes the experimental and numerical investigations carried-out on a lean premixed burner prototype supplied by methane-hydrogen mixture with an hydrogen content up to 100%. The experimental activities were performed with the aim to collect practical data about the effect of the hydrogen content in the fuel on combustion parameters as: air velocity flash-back limit, heat release distribution, NOx emissions. This preliminary data set represents the starting point for a more ambitious project which foresees the upgrading of the hydrogen gas turbine combustor installed by ENEL in Fusina (Italy). The same data will be used also for building a computational fluid dynamic (CFD) model usable for assisting the design of the upgraded combustor. Starting from an existing heavy-duty gas turbine burner, a burner prototype was designed by means of CFD modeling and hot-wire measurements. The geometry of the new premixer was defined in order to control turbulent phenomena that could promote the flame moving-back into the duct, to increase the premixer outlet velocity and to produce a stable central recirculation zone in front of the burner. The burner prototype was then investigated during a test campaign performed at the ENEL’s TAO test facility in Livorno (Italy) which allows combustion test at atmospheric pressure with application of optical diagnostic techniques. In-flame temperature profiles, pollutant emissions and OH* chemiluminescence were measured over a wide range of the main operating parameters for three fuels with different hydrogen content (0, 75% and 100% by vol.). Flame control on burner prototype fired by pure hydrogen was achieved by managing both the premixing degree and the air discharge velocity, affecting the NOx emissions and combustor pressure losses respectively. A CFD model of the above-mentioned combustion test rig was developed with the aim to validate the model prediction capabilities and to help the experimental data analysis. Detailed simulations, performed by a CFD 3-D RANS commercial code, were focused on air/fuel mixing process, temperature field, flame position and NOx emission estimation.


Author(s):  
Luke H. Cowell ◽  
Amjad Rajput ◽  
Douglas C. Rawlins

A fuel injection system for industrial gas turbine engines capable of using natural gas and liquid fuel in dry, lean premixed combustion is under development to significantly reduce NOx and CO emissions. The program has resulted in a design capable of operating on DF#2 over the 80 to 100% engine load range meeting the current TA LUFT regulations of 96 ppm (dry, @ 15% O2) NOx and 78 ppm CO. When operating on natural gas the design meets the guaranteed levels of 25 ppm NOx and 50 ppm CO. The design approach is to apply lean premixed combustion technology to liquid fuel. Both injector designs introduce the majority of the diesel fuel via airblast alomization into a premixing passage where fuel vaporization and air-fuel premixing occur. Secondary fuel injection occurs through a pilot fuel passage which operates in a partially premixed mode. Development is completed through injector modeling, flow visualization, combustion rig testing, and engine testing. The prototype design tested in development engine environments has operated with NOx emissions below 65 ppm and 20 ppm CO at full load. This paper includes a detailed discussion of the injector design and qualification testing completed on this development hardware.


Author(s):  
Shazib Z. Vijlee ◽  
John C. Kramlich ◽  
Ann M. Mescher ◽  
Scott D. Stouffer ◽  
Alanna R. O’Neil-Abels

The use of alternative/synthetic fuels in jet engines requires improved understanding and prediction of the performance envelopes and emissions characteristics relative to the behavior of conventional fuels. In this study, experiments in a toroidal well-stirred reactor (TWSR) are used to study lean premixed combustion temperature and extinction behavior for several fuels including simple alkanes, synthetic jet fuels, and conventional JP8. A perfectly stirred reactor (PSR) model is used to interpret the observed behavior. The first portion of the study deals with jet fuels and synthetic jet fuels with varying concentrations of added aromatic compounds. Synthetic fuels contain little or no natural aromatic species, so aromatic compounds are added to the fuel because fuel system seals require these species to function properly. The liquid fuels are prevaporized and premixed before being burned in the TWSR. Air flow is held constant to keep the reactor loading roughly constant. Temperature is monitored inside the reactor as the fuel flow rate is slowly lowered until extinction occurs. The extinction point is defined by both its equivalence ratio and temperature. The measured blowout point is very similar for all four synthetic fuels and the baseline JP8 at aromatic concentrations of up to 20% by volume. Since blowout is essentially the same for all the base fuels at low aromatic concentrations, a single fuel was used to test the effect of aromatic concentrations from 0 to 100%. PSR models of these complex fuels show the expected result that behavior diverges from an ideal, perfectly premixed model as the combustion approaches extinction. The second portion of this study deals with lean premixed combustion of simple gaseous alkanes (methane, ethane, and propane) in the same TWSR. These simpler fuels were tested for extinction in a similar manner to the complex fuels, and behavior was characterized similarly. Once again, PSR models show that the TWSR behaves similar to a PSR during stable combustion far from blowout, but as it approaches blowout and becomes less stable a single PSR no longer accurately describes the TWSR. This work is a step towards developing chemical reactor networks (CRNs) based on computational fluid dynamics (CFD) of the simple gaseous fuels in the TWSR. Ultimately, CRNs are the only realistic way to accurately perform detailed chemical modeling of the combustion of complex liquid fuels.


Author(s):  
B. Stoffel ◽  
L. Reh

The lean premixed combustion of gaseous fuels is an attractive technology to attain very low NOx emission levels in gas turbine engines. If liquid fuels are converted to gaseous fuels by vaporization, they also can be used in premix gas burners and similar low NOx emissions are achievable. Experiments were carried out in a test rig in which the three main process steps of liquid fuel combustion (vaporization of fuel, mixing of air and fuel vapor and combustion reaction) can be performed successively in three separate devices and examined independently. A wide range of liquid fuels (methanol, ethanol, heptane, gasoline, rape oil methyl ester and two diesel oil qualities) was vaporized in an externally heated tube in the presence of superheated steam. These fuel vapors were led to a Pyrocore® radiant burner operating in fully premixed mode at atmosperic pressure. For all fuels without bound nitrogen, NOx levels below 15 mg/m3 at 3% O2 in the dry exhaust gas (2.5 ppm at 15% O2) were measured at lean combustion conditions. However, the nitrogen particularly bound in higher boiling fuels like diesel oil was converted completely to NOx under these conditions. The fuel bound nitrogen (FBN) proved to be the major source of NOx when burning vaporized diesel oil.


Sign in / Sign up

Export Citation Format

Share Document