Comparison of gravimetric and seismic constraints on the structure of the Aegean lithosphere in the forearc of the Hellenic subduction zone in the area of Crete

2007 ◽  
Vol 44 (3-5) ◽  
pp. 173-185 ◽  
Author(s):  
K. Snopek ◽  
T. Meier ◽  
B. Endrun ◽  
M. Bohnhoff ◽  
U. Casten
2016 ◽  
Vol 261 ◽  
pp. 141-151 ◽  
Author(s):  
Judith M. Confal ◽  
Tuna Eken ◽  
Frederik Tilmann ◽  
Seda Yolsal-Çevikbilen ◽  
Yeşim Çubuk-Sabuncu ◽  
...  

1988 ◽  
Vol 146 (1-4) ◽  
pp. 203-215 ◽  
Author(s):  
J.E. Meulenkamp ◽  
M.J.R. Wortel ◽  
W.A. van Wamel ◽  
W. Spakman ◽  
E. Hoogerduyn Strating

2009 ◽  
Vol 178 (2) ◽  
pp. 775-791 ◽  
Author(s):  
J. Suckale ◽  
S. Rondenay ◽  
M. Sachpazi ◽  
M. Charalampakis ◽  
A. Hosa ◽  
...  

2002 ◽  
Vol 200 (3-4) ◽  
pp. 243-253 ◽  
Author(s):  
Mireille Laigle ◽  
Alfred Hirn ◽  
Maria Sachpazi ◽  
Christophe Clément

2001 ◽  
Vol 343 (3-4) ◽  
pp. 239-262 ◽  
Author(s):  
M Bohnhoff ◽  
J Makris ◽  
D Papanikolaou ◽  
G Stavrakakis

Eos ◽  
2008 ◽  
Vol 89 (40) ◽  
pp. 378-378 ◽  
Author(s):  
Wolfgang Friederich ◽  
Thomas Meier

2017 ◽  
Vol 43 (1) ◽  
pp. 495
Author(s):  
M. D Tranos ◽  
D.M. Mountrakis ◽  
C. B Papazachos ◽  
E. Karagianni ◽  
D. Vamvakaris

The Kastoria-Nestorion region, which belongs to the Tertiary MesoHellenic Trough (MHT), is a low relief NW-SE trending intermountainous basin filled with Tertiary molasse-type sedimentary rocks and nowadays drained by the Aliakmnonas River and its tributaries. In the present work, the large fault zones in the region and the general fault pattern are defined, mapped and described with the aid of satellite images. In addition, a large number of fault-slip data from the mesoscale exposed faults has been recorded, in order to better understand the faulting geometry and kinematics of the region. The stress-inversion analysis of these fault-slip data in comparison with earthquake faultplane solution information permits us to define the stress regimes imposed to the region from the Late Tertiary up to the present and to correlate them with the late orogenic and post-orogenic deformation of the Hellenic orogen. In particular, five stress regimes have been defined from which the former two (D1 and D2) are related to the late collisional processes between the Apulia and Eurasia plates, the next two events (D3 and D4) are related to the present-day Hellenic subduction zone, whereas the last D5 event which is the active deformation of the region appears as an intra-continental or intra-plate deformation more related with the Adria-Eurasia ongoing convergence rather with the Hellenic subduction zone.


2021 ◽  
Author(s):  
Armel Menant ◽  
Onno Oncken ◽  
Johannes Glodny ◽  
Samuel Angiboust ◽  
Laurent Jolivet ◽  
...  

<p>Subduction margins are the loci of a wide range of deformation processes occurring at different timescales along the plate interface and in the overriding forearc crust. Whereas long-term deformation is usually considered as stable over Myr-long periods, this vision is challenged by an increasing number of observations suggesting a long-term pulsing evolution of active margins. To appraise this emerging view of a highly dynamic subduction system and identify the driving mechanisms, detailed studies on high pressure-low temperature (HP-LT) exhumed accretionary complexes are crucial as they open a window on the deformation history affecting the whole forearc region.</p><p>In this study, we combine structural and petrological observations, Raman spectroscopy on carbonaceous material, Rb/Sr multi-mineral geochronology and thermo-mechanical numerical models to unravel with an unprecedented resolution the tectono-metamorphic evolution of the Late-Cenozoic HP-LT nappe stack cropping out in western Crete (Hellenic subduction zone). A consistent decrease of peak temperatures and deformation ages toward the base of the nappe pile allows us to identify a minimum of three basal accretion episodes between ca. 24 Ma and ca. 15 Ma. On the basis of structural evidences and pressure-temperature-time-strain predictions from numerical modeling, we argue that each of these mass-flux events triggered a pulse in the strain rate, sometimes associated with a switch of the stress regime (i.e., compressional/extensional). Such accretion-controlled transient deformation episodes last at most ca. 1-2 Myr and may explain the poly-phased structural records of exhumed rocks without involving changes in far-field stress conditions. This long-term background tectonic signal controlled by deep accretionary processes plays a part in active deformations monitored at subduction margins, though it may remain blind to most of geodetic methods because of superimposed shorter-timescale transients, such as seismic-cycle-related events.</p>


2013 ◽  
Vol 5 (1) ◽  
pp. 427-461 ◽  
Author(s):  
F. Sodoudi ◽  
A. Bruestle ◽  
T. Meier ◽  
R. Kind ◽  
W. Friederich ◽  
...  

Abstract. New combined P receiver functions and seismicity data obtained from the EGELADOS network employing 65 stations within the Aegean constrained new information on the geometry of the Hellenic subduction zone. The dense network and large dataset enabled us to accurately estimate the Moho of the continental Aegean plate across the whole area. Presence of a negative contrast at the Moho boundary indicating the serpentinized mantle wedge above the subducting African plate was clearly seen along the entire forearc. Furthermore, low seismicity was observed within the serpentinized mantle wedge. We found a relatively thick continental crust (30–43 km) with a maximum thickness of about 48 km beneath the Peloponnesus Peninsula, whereas a thinner crust of about 27–30 km was observed beneath western Turkey. The crust of the overriding plate is thinning beneath the southern and central Aegean (Moho depth 23–27 km). Moreover, P receiver functions significantly imaged the subducted African Moho as a strong converted phase down to a depth of 180 km. However, the converted Moho phase appears to be weak for the deeper parts of the African plate suggesting reduced dehydration and nearly complete phase transitions of crustal material into denser phases. We show the subducting African crust along 8 profiles covering the whole southern and central Aegean. Seismicity of the western Hellenic subduction zone was taken from the relocated EHB-ISC catalogue, whereas for the eastern Hellenic subduction zone, we used the catalogues of manually picked hypocenter locations of temporary networks within the Aegean. P receiver function profiles significantly revealed in good agreement with the seismicity a low dip angle slab segment down to 200 km depth in the west. Even though, the African slab seems to be steeper in the eastern Aegean and can be followed down to 300 km depth implying lower temperatures and delayed dehydration towards larger depths in the eastern slab segment. Our results showed that the transition between the western and eastern slab segments is located beneath the southeastern Aegean crossing eastern Crete and the Karpathos basin. High resolution P receiver functions also clearly resolved the top of a strong low velocity zone (LVZ) at about 60 km depth. This LVZ is interpreted as asthenosphere below the Aegean continental lithosphere and above the subducting slab. Thus the Aegean mantle lithosphere seems to be 30–40 km thick, which means that its thickness increased again since the removal of the mantle lithosphere about 15 to 35 Ma ago.


Sign in / Sign up

Export Citation Format

Share Document