Alleviation of salt stress in citrus seedlings inoculated with arbuscular mycorrhizal fungi depends on the rootstock salt tolerance

2014 ◽  
Vol 171 (1) ◽  
pp. 76-85 ◽  
Author(s):  
Josefa M. Navarro ◽  
Olaya Pérez-Tornero ◽  
Asunción Morte
2018 ◽  
Vol 25 (6) ◽  
pp. 1102-1114 ◽  
Author(s):  
Abeer Hashem ◽  
Abdulaziz A. Alqarawi ◽  
Ramalingam Radhakrishnan ◽  
Al-Bandari Fahad Al-Arjani ◽  
Horiah Abdulaziz Aldehaish ◽  
...  

2020 ◽  
Vol 11 ◽  
Author(s):  
Rujira Tisarum ◽  
Cattarin Theerawitaya ◽  
Thapanee Samphumphuang ◽  
Kanyamin Polispitak ◽  
Panarat Thongpoem ◽  
...  

2020 ◽  
Vol 178 ◽  
pp. 104159 ◽  
Author(s):  
Tengteng Gao ◽  
Xiaomin Liu ◽  
Lei Shan ◽  
Qian Wu ◽  
Yuan Liu ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Abeer Hashem ◽  
E. F. Abd_Allah ◽  
A. A. Alqarawi ◽  
A. A. Al-Huqail ◽  
M. A. Shah

The role of soil microbiota in plant stress management, though speculated a lot, is still far from being completely understood. We conducted a greenhouse experiment to examine synergistic impact of plant growth promoting rhizobacterium,Bacillus subtilis(BERA 71), and arbuscular mycorrhizal fungi (AMF) (Claroideoglomus etunicatum;Rhizophagus intraradices; andFunneliformis mosseae) to induce acquired systemic resistance in Talh tree (Acacia gerrardiiBenth.) against adverse impact of salt stress. Compared to the control, the BERA 71 treatment significantly enhanced root colonization intensity by AMF, in both presence and absence of salt. We also found positive synergistic interaction betweenB.subtilisand AMFvis-a-visimprovement in the nutritional value in terms of increase in total lipids, phenols, and fiber content. The AMF and BERA 71 inoculated plants showed increased content of osmoprotectants such as glycine, betaine, and proline, though lipid peroxidation was reduced probably as a mechanism of salt tolerance. Furthermore, the application of bioinoculants to Talh tree turned out to be potentially beneficial in ameliorating the deleterious impact of salinity on plant metabolism, probably by modulating the osmoregulatory system (glycine betaine, proline, and phenols) and antioxidant enzymes system (SOD, CAT, POD, GR, APX, DHAR, MDAHR, and GSNOR).


Sign in / Sign up

Export Citation Format

Share Document