Arbuscular Mycorrhizal Fungi Mitigates Salt Stress Toxicity in Stevia rebaudiana Bertoni Through the Modulation of Physiological and Biochemical Responses

Author(s):  
Iman Janah ◽  
Abdelilah Meddich ◽  
Abdelhadi Elhasnaoui ◽  
Sara Khayat ◽  
Mohamed Anli ◽  
...  
2018 ◽  
Vol 25 (6) ◽  
pp. 1102-1114 ◽  
Author(s):  
Abeer Hashem ◽  
Abdulaziz A. Alqarawi ◽  
Ramalingam Radhakrishnan ◽  
Al-Bandari Fahad Al-Arjani ◽  
Horiah Abdulaziz Aldehaish ◽  
...  

2020 ◽  
Vol 11 ◽  
Author(s):  
Rujira Tisarum ◽  
Cattarin Theerawitaya ◽  
Thapanee Samphumphuang ◽  
Kanyamin Polispitak ◽  
Panarat Thongpoem ◽  
...  

2020 ◽  
Vol 178 ◽  
pp. 104159 ◽  
Author(s):  
Tengteng Gao ◽  
Xiaomin Liu ◽  
Lei Shan ◽  
Qian Wu ◽  
Yuan Liu ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Abeer Hashem ◽  
E. F. Abd_Allah ◽  
A. A. Alqarawi ◽  
A. A. Al-Huqail ◽  
M. A. Shah

The role of soil microbiota in plant stress management, though speculated a lot, is still far from being completely understood. We conducted a greenhouse experiment to examine synergistic impact of plant growth promoting rhizobacterium,Bacillus subtilis(BERA 71), and arbuscular mycorrhizal fungi (AMF) (Claroideoglomus etunicatum;Rhizophagus intraradices; andFunneliformis mosseae) to induce acquired systemic resistance in Talh tree (Acacia gerrardiiBenth.) against adverse impact of salt stress. Compared to the control, the BERA 71 treatment significantly enhanced root colonization intensity by AMF, in both presence and absence of salt. We also found positive synergistic interaction betweenB.subtilisand AMFvis-a-visimprovement in the nutritional value in terms of increase in total lipids, phenols, and fiber content. The AMF and BERA 71 inoculated plants showed increased content of osmoprotectants such as glycine, betaine, and proline, though lipid peroxidation was reduced probably as a mechanism of salt tolerance. Furthermore, the application of bioinoculants to Talh tree turned out to be potentially beneficial in ameliorating the deleterious impact of salinity on plant metabolism, probably by modulating the osmoregulatory system (glycine betaine, proline, and phenols) and antioxidant enzymes system (SOD, CAT, POD, GR, APX, DHAR, MDAHR, and GSNOR).


Author(s):  
Hongwen Xu, Yan Lu ◽  
Shuyuan Tong

The impact of arbuscular mycorrhizal fungi (AMF) Glomus. tortuosum on morphology, photosynthetic pigments, chlorophyll (Chl) fluorescence, photosynthetic capacity and rubisco activity of maize under saline stress were detected under potted culture experiments. The experimental result indicated the saline stress notably reduced both dry mass and leaf area in contrast with the control treatment. Nevertheless, AMF remarkably ameliorated dry mass and leaf area under saline stress environment. Besides, maize plants appeared to have high dependency on AMF which improved physiological mechanisms by raising chlorophyll content, efficiency of light energy utilization, gas exchange and rubisco activity under salinity stress. In conclusion, AM could mitigate the growth limitations caused by salinity stress, and hence play a very important role in promoting photosynthetic capacity under salt stress in maize.


Author(s):  
Hashem Abeer ◽  
E. F. Abd_Allah ◽  
A. A. Alqarawi ◽  
Dilfuza Egamberdieva

The aim of present study was to examine the effect of arbuscular mycorrhizal fungi (AMF) on the growth, lipid peroxidation, antioxidant enzyme activity and some key physio-biochemical attributes in cowpea (<italic>Vigna unguiculata</italic> [L.] Walp.) subjected to salt stress. Salt stress (200 mM NaCl) reduced growth, biomass, relative water content and chlorophyll pigment content in cowpea leaves. AMF ameliorated the negative impact of salinity on the growth parameters studied. The activity of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), peroxidase (POD) and glutathione reductase (GR) enhanced under salt stress and AMF inoculation further enhanced their activity, thus strengthening the plant’s defense system. Proline content increased in salt stressed plants as well as AMF-inoculated plants providing efficient protection against salt stress. Besides this AMF also increased uptake of mineral elements which have direct impact on the osmoregulation of the plants. The present study shows that AMF possesses the potential to enhance salt tolerance of cowpea.


Sign in / Sign up

Export Citation Format

Share Document