Preparation of Li2S–GeSe2–P2S5 electrolytes by a single step ball milling for all-solid-state lithium secondary batteries

2010 ◽  
Vol 195 (15) ◽  
pp. 4984-4989 ◽  
Author(s):  
James E. Trevey ◽  
Yoon Seok Jung ◽  
Se-Hee Lee
2021 ◽  
Author(s):  
Marvin Cronau ◽  
Marvin Szabo ◽  
Bernhard Roling

Single-step ball milling synthesis of a highly conductive glass ceramic solid electrolyte enables a low-impedance all-solid-state battery.


Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 76
Author(s):  
Chelladurai Karuppiah ◽  
Balamurugan Thirumalraj ◽  
Srinivasan Alagar ◽  
Shakkthivel Piraman ◽  
Ying-Jeng Jame Li ◽  
...  

Developing a highly stable and non-precious, low-cost, bifunctional electrocatalyst is essential for energy storage and energy conversion devices due to the increasing demand from the consumers. Therefore, the fabrication of a bifunctional electrocatalyst is an emerging focus for the promotion and dissemination of energy storage/conversion devices. Spinel and perovskite transition metal oxides have been widely explored as efficient bifunctional electrocatalysts to replace the noble metals in fuel cell and metal-air batteries. In this work, we developed a bifunctional catalyst for oxygen reduction and oxygen evolution reaction (ORR/OER) study using the mechanochemical route coupling of cobalt oxide nano/microspheres and carbon black particles incorporated lanthanum manganite perovskite (LaMnO3@C-Co3O4) composite. It was synthesized through a simple and less-time consuming solid-state ball-milling method. The synthesized LaMnO3@C-Co3O4 composite was characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy, Brunauer-Emmett-Teller (BET) analysis, X-ray diffraction spectroscopy, and micro-Raman spectroscopy techniques. The electrocatalysis results showed excellent electrochemical activity towards ORR/OER kinetics using LaMnO3@C-Co3O4 catalyst, as compared with Pt/C, bare LaMnO3@C, and LaMnO3@C-RuO2 catalysts. The observed results suggested that the newly developed LaMnO3@C-Co3O4 electrocatalyst can be used as a potential candidate for air-cathodes in fuel cell and metal-air batteries.


Author(s):  
Ju Young Kim ◽  
Joonam Park ◽  
Seok Hun Kang ◽  
Seungwon Jung ◽  
Dong Ok Shin ◽  
...  

2014 ◽  
Vol 82 (7) ◽  
pp. 591-594 ◽  
Author(s):  
Yusuke ITO ◽  
Atsushi SAKUDA ◽  
Takamasa OHTOMO ◽  
Akitoshi HAYASHI ◽  
Masahiro TATSUMISAGO

2013 ◽  
Vol 423-426 ◽  
pp. 426-429
Author(s):  
Xin Ze Wang ◽  
Zhong Xin Liu ◽  
Hong Jian Gao ◽  
Yani Jing ◽  
Chang Lin Li ◽  
...  

LiTaO3: Tm3+, Yb3+powders were synthesized by a high-energy ball-milling (HEB) method compared with the conventional solid-state reaction (SSR) method. Under the excitation of 980 nm laser, the strong blue emission (477 nm) band is observed and attributed to1G4-3H6of Tm3+. Because of it causing high local temperature and narrow particles size, increasing the contact area between the particles and improved crystallinity of the host, synthesis by high-energy ball milling show higher photoluminescence (PL) intensity compared to the solid state reaction method. In the process of mechanical milling, Tm3+, Yb3+co-doped LiTaO3phosphors with high photoluminescence property could be achieved at a relatively low reaction temperature.


RSC Advances ◽  
2014 ◽  
Vol 4 (73) ◽  
pp. 38718-38725 ◽  
Author(s):  
Fengyuan Lu ◽  
Tiankai Yao ◽  
Jinling Xu ◽  
Jingxian Wang ◽  
Spencer Scott ◽  
...  

High energy ball milled iodoapatite in the form of an amorphous matrix embedded with nanocrystals can be readily crystallized by subsequent low temperature thermal annealing, which greatly improves the thermal stability and iodine confinement.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 301
Author(s):  
Kirill Lyashkov ◽  
Valery Shabashov ◽  
Andrey Zamatovskii ◽  
Kirill Kozlov ◽  
Natalya Kataeva ◽  
...  

The solid-state mechanical alloying (MA) of high-nitrogen chromium-manganese austenite steel—MA in a planetary ball mill, —was studied by methods of Mössbauer spectroscopy and transmission electron microscopy (TEM). In the capacity of a material for the alloying we used mixtures of the binary Fe–Mn and Fe–Cr alloys with the nitrides CrN (Cr2N) and Mn2N. It is shown that ball milling of the mixtures has led to the occurrence of the α → γ transitions being accompanied by the (i) formation of the solid solutions supersaturated with nitrogen and by (ii) their decomposition with the formation of secondary nitrides. The austenite formed by the ball milling and subsequent annealing at 700–800 °C, was a submicrocrystalline one that contained secondary nano-sized crystalline CrN (Cr2N) nitrides. It has been established that using the nitride Mn2N as nitrogen-containing addition is more preferable for the formation and stabilization of austenite—in the course of the MA and subsequent annealing—because of the formation of the concentration-inhomogeneous regions of γ phase enriched with austenite-forming low-mobile manganese.


Sign in / Sign up

Export Citation Format

Share Document