Electrochemical performance and thermal stability of LiCoO2 cathodes surface-modified with a sputtered thin film of lithium phosphorus oxynitride

2010 ◽  
Vol 195 (24) ◽  
pp. 8317-8321 ◽  
Author(s):  
Kwan-Ho Choi ◽  
Jun-Hong Jeon ◽  
Hong-Kyu Park ◽  
Sung-Man Lee
1997 ◽  
Author(s):  
YongTae Kim ◽  
Dong J. Kim ◽  
Chang W. Lee ◽  
Jong-Wan Park

1990 ◽  
Vol 112 (1) ◽  
pp. 10-15 ◽  
Author(s):  
M. I. Flik ◽  
C. L. Tien

Intrinsic thermal stability denotes a situation where a superconductor can carry the operating current without resistance at all times after the occurrence of a localized release of thermal energy. This novel stability criterion is different from the cryogenic stability criteria for magnets and has particular relevance to thin-film superconductors. Crystals of ceramic high-temperature superconductors are likely to exhibit anisotropic thermal conductivity. The resultant anisotropy of highly oriented films of superconductors greatly influences their thermal stability. This work presents an analysis for the maximum operating current density that ensures intrinsic stability. The stability criterion depends on the amount of released energy, the Biot number, the aspect ratio, and the ratio of the thermal conductivities in the plane of the film and normal to it.


2021 ◽  
Vol 95 (3) ◽  
pp. 30201
Author(s):  
Xi Guan ◽  
Yufei Wang ◽  
Shang Feng ◽  
Jidong Zhang ◽  
Qingqing Yang ◽  
...  

Organic solar cells (OSCs) have been fabricated using cathode buffer layers based on bathocuproine (BCP) and 4,4'-N,N'-dicarbazole-biphenyl (CBP). It is found that despite nearly same power conversion efficiencies, the bilayer of BCP/CBP shows increased thermal stability of device than the monolayer of BCP, mostly because upper CBP thin film stabilizes under BCP thin film. The mixed layer of BCP:CBP gives slightly decreased efficiency than BCP and BCP/CBP, mostly because the electron mobility of the OSC using BCP:CBP is decreased than those using BCP and BCP/CBP. However, the BCP:CBP increases thermal stability of device than BCP and BCP/CBP, ascribed to that the BCP and CBP effectively inhibit reciprocal tendencies of crystallizations in the mixed layer. Moreover, the BCP:CBP improves the light stability of device than the BCP and BCP/CBP, because the energy transfer from BCP to CBP in in the mixed layer effectively decelerates the photodegradation of BCP. We provide a facial method to improve the stabilities of cathode buffer layers against heat and light, beneficial to the commercial development of OSCs.


Nanoscale ◽  
2018 ◽  
Vol 10 (4) ◽  
pp. 2128-2137 ◽  
Author(s):  
A. Reyes Jiménez ◽  
R. Nölle ◽  
R. Wagner ◽  
J. Hüsker ◽  
M. Kolek ◽  
...  

The influence of lithium phosphorus oxynitride (LIPON) as an “artificial SEI layer” on the electrochemical performance of silicon thin film electrodes.


2021 ◽  
Vol 900 (1) ◽  
pp. 012042
Author(s):  
N Stevulova ◽  
A Estokova

Abstract This paper is addressed to comparative study of changes in thermal stability of surface-modified hemp-hurds aggregates long-term incorporated in bio-aggregate-based composites with the original ones before their integration into alternative binder matrix. In this study, the effectiveness of alkaline treatment of hemp hurds compared to the raw bio-aggregates as well as in relation to their behaviour when they are long-term incorporated in the MgO-cement environment is investigated. The differences in the thermal behaviour of the samples are explained by the changed structure of hemp hurds constituents due to the pre-treatment and long-term action of the alternative binder components on the bio-aggregates. Alkaline treatment increases thermal stability of hemp hurds compared to raw sample. Also long-term incorporation of hemp hurds in MgO-cement matrix had a similar effect in case of alkaline modified bio-aggregates. The more alkali ions present in the structure of hemp hurdssamples, the more ash is formed during their thermal decomposition studied by thermal gravimetry (TG) and differential scanning calorimetry (DSC).


2021 ◽  
pp. 93-98
Author(s):  
Evgenii Erofeev ◽  
Egor Polyntsev ◽  
Sergei Ishutkin

Electrophysical characteristics and their thermal stability of thin-film resistors based on tantalum nitride (TaN) obtained by reactive magnetron sputtering were investigated. The optimal modes of the magnetron sputtering process are determined, ensuring the Ta2N phase film composition with the value of the specific electrical resistance of 250 μm cm and high thermal stability of the parameters. On the basis of the investigations carried out, thin-film matching resistors were manufactured for use as part of an electro-optical InP-based MZ modulator


2021 ◽  
Vol 88 ◽  
pp. 106014
Author(s):  
Han-Nan Yang ◽  
Shou-Jie He ◽  
Tao Zhang ◽  
Jia-Xiu Man ◽  
Yongbiao Zhao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document