Li1.2Zr1.9Ca0.1(PO4)3, a room-temperature Li-ion solid electrolyte

2011 ◽  
Vol 196 (18) ◽  
pp. 7760-7762 ◽  
Author(s):  
Hui Xie ◽  
John B. Goodenough ◽  
Yutao Li
2021 ◽  
Author(s):  
Ming Liu ◽  
Ernst van Eck ◽  
Swapna Ganapathy ◽  
Marnix Wagemaker

Abstract Development of commercial solid-state batteries so far been hindered by the individual limitations of inorganic and organic solid-electrolytes, motivating hybrid concepts. However, room-temperature performance of hybrid-solid electrolytes is still insufficient in terms of ion conductivity, where especially the role and impact of the inorganic and organic interphases is largely unexplored. A key challenge is to assess the Li-ion transport over the interfaces directly and relate this to the surface chemistry. Here the lithium-ion conductivity in hybrid-solid electrolytes, the interface structure and Li+ interface transport was investigated by state-of-art solid-state nuclear magnetic resonance methodologies. In a hybrid-solid Polyethylene oxide polymer – inorganic electrolyte, two representative types of ionic liquids, having a different miscibility with the polymer, were used as a benchmark to tailor the local environment at the interface between the inorganic and organic solid electrolytes species. The poor miscibility ionic liquid wets the polymer-inorganic interface and raises the local polarizability, thereby lowering the diffusional barrier, which activates the high conductivity of the inorganic solid-electrolyte, resulting in and overall room temperature conductivity of 0.25 mS/cm. A very high critical current density of 0.25 mA/cm2 versus a Li-metal anode is achieved, demonstrating improved stability, and a LiFePO4 – Li-metal full solid-state cell can be cycled at room temperature at an Coulombic efficiency of 99.9%. The local interface environment between the solid electrolyte phases in hybrid solid electrolytes, is thus demonstrated to be the bottleneck and tailoring the interface properties appears a viable route towards the design of highly conducting hybrid-solid electrolyte concepts.


2021 ◽  
Vol 12 (2-2021) ◽  
pp. 30-35
Author(s):  
I. V. Bocharova ◽  
◽  
G. B. Kunshina ◽  

NASICON-type Li1.3Al0.3Ti1.7(PO4)3 ceramics with a high-density was obtained from powders synthesized from a liquid-phase precursor. The technological scheme of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte production is given. It is established that at 800 °C a single-phase well-crystallized Li1.3Al0.3Ti1.7(PO4)3 is formed. The ionic conductivity of the sintered Li1.3Al0.3Ti1.7(PO4)3 tablets (density 88–90 %) was 1,9·10–4 S/cm at room temperature, and the electronic conductivity did not exceed 5·10–10 S/cm. The Li+ ion transfer number, measured by potentiostatic chronoamperometry, was 0.99, indicating that the solid electrolyte Li1.3Al0.3Ti1.7(PO4)3 is a purely ionic conductor.


Nano Energy ◽  
2019 ◽  
Vol 63 ◽  
pp. 103815 ◽  
Author(s):  
Weimin Zhao ◽  
Bizhu Zheng ◽  
Haodong Liu ◽  
Fucheng Ren ◽  
Jianping Zhu ◽  
...  

2021 ◽  
pp. 2100836
Author(s):  
Shumin Zhang ◽  
Feipeng Zhao ◽  
Shuo Wang ◽  
Jianwen Liang ◽  
Jian Wang ◽  
...  

2017 ◽  
Vol 121 (29) ◽  
pp. 15565-15573 ◽  
Author(s):  
Yu-Ting Chen ◽  
Anirudha Jena ◽  
Wei Kong Pang ◽  
Vanessa K. Peterson ◽  
Hwo-Shuenn Sheu ◽  
...  

2014 ◽  
Vol 70 (a1) ◽  
pp. C1101-C1101
Author(s):  
Laurent Castro ◽  
Nicolas Penin ◽  
Dany Carlier ◽  
Alain Wattiaux ◽  
Stanislav Pechev ◽  
...  

Iron vanadates and phosphates have been widely explored [1-2] as possible electrode material for Li-ion batteries. In the goal of finding new materials, our approach was to consider existing materials and to investigate the flexibility of their network for possible substitutions. Among the different materials containing iron and vanadium, Cu3Fe4(XO4)6 (X = P, V) are isostructural to Fe7(PO4)6. Lafontaine et al. [3] discussed the structural relationships between β-Cu3Fe4(VO4)6 and several other vanadates, phosphates and molybdates of general formula AxBy(VO4)6. The interesting network flexibility was then demonstrated with the existence of four different crystallographic sites, which can be partially occupied depending on the x+y value : x+y = 7 for β-Cu3Fe4(VO4)6) and x+y = 8 for NaCuFe2(VO4)3. The LixFey(VO4)6 phase was then prepared considering the substitution of Li+ and Fe3+ for Cu2+ ions in β-Cu3Fe4(VO4)6 and the existence of an extra site to accommodate the charge compensation (7 ≤ x+y ≤ 8). As expected, a new lithium iron vanadate, isotructural to mineral Howardevansite was then obtained. Single crystal diffraction data were collected at room temperature on Enraf-Nonius CAD-4 diffractometer. Structure was refined with JANA-2006 program package. Mössbauer and magnetic measurements were also used to check the oxidation state of iron ions, to support the obtained crystal structure and to consider any possible structural/magnetic transitions. All the results will be presented and discussed in this presentation.


2021 ◽  
Vol 369 ◽  
pp. 115713
Author(s):  
Xingxing Zhang ◽  
Cheng Li ◽  
Weili Liu ◽  
Tae-Sik Oh ◽  
Jeffrey W. Fergus

Sign in / Sign up

Export Citation Format

Share Document