Non-equilibrium two-phase model of the air-cathode of a PEM fuel cell based on GDL experimental water transport characteristics

2013 ◽  
Vol 232 ◽  
pp. 376-388 ◽  
Author(s):  
Bladimir Ramos-Alvarado ◽  
Abel Hernandez-Guerrero ◽  
Michael W. Ellis
2006 ◽  
Vol 153 (2) ◽  
pp. A372 ◽  
Author(s):  
Guangyu Lin ◽  
Trung Van Nguyen

2011 ◽  
Vol 26 (1) ◽  
pp. 216-226 ◽  
Author(s):  
K. H. Loo ◽  
K. H. Wong ◽  
Y. M. Lai ◽  
S. C. Tan ◽  
Chi K. Tse

Author(s):  
Denver F. Cheddie ◽  
Norman D. H. Munroe

A two-phase model of an intermediate temperature (120–200 °C) proton exchange membrane (PEM) fuel cell is presented. This model accounts for two phase effects due to gas solubility in the phosphoric acid/PBI electrolyte, and considers aqueous phase electrochemical reactions. It accounts for all polarization and transport phenomena, and shows a good fit with experimental data in the temperature range (150–190 °C). This paper investigates catalyst utilization in intermediate temperature PEM fuel cells with phosphoric acid doped membranes. Simulations show that, under normal operation, 1–2% of the catalyst is utilized at both electrodes. Strategies are suggested to help reduce the cost of producing power from such systems.


1999 ◽  
Author(s):  
C. Y. Wang ◽  
Z. H. Wang ◽  
Y. Pan

Abstract Proton exchange membrane (PEM) fuel cells have emerged, in the last decade, as a viable technology for power generation and energy conversion. Fuel cell (FC) engines for vehicular applications possess many attributes such as high fuel efficiency, low emission, quiet and low temperature operation, and modularity. An important phenomenon limiting fuel cell performance is the two-phase flow and transport of fuel and oxidant from flow channels to reaction sites. In this paper a mathematical model is presented to study the two-phase flow dynamics, multi-component transport and electrochemical kinetics in the air cathode, the most important component of the hydrogen PEM fuel cell. A major feature of the present model is that it unifies single- and two-phase analyses for low and high current densities, respectively, and it is capable of predicting the threshold current density corresponding to the onset of liquid water formation in the air cathode. A numerical study based on the finite volume method is then undertaken to calculate the detailed distributions of local current density, oxygen concentration, water vapor concentration and liquid water saturation as well as their effects on the cell polarization curve. The simulated polarization curve and predicted threshold current density corresponding to the onset of liquid water formation for a single-channel, 5cm2 fuel cell compare favorably with experimental results. Quantitative comparisons with experiments presently being conducted at our laboratory will be reported in a forthcoming paper.


Sign in / Sign up

Export Citation Format

Share Document