Analysis of effects of the state of charge on the formation and growth of the deposit layer on graphite electrode of pouch type lithium ion polymer batteries

2014 ◽  
Vol 270 ◽  
pp. 213-220 ◽  
Author(s):  
Victor A. Agubra ◽  
Jeffrey W. Fergus ◽  
Rujian Fu ◽  
Song-Yul Choe
2021 ◽  
Vol 10 (4) ◽  
pp. 1759-1768
Author(s):  
Mouhssine Lagraoui ◽  
Ali Nejmi ◽  
Hassan Rayhane ◽  
Abderrahim Taouni

The main goal of a battery management system (BMS) is to estimate parameters descriptive of the battery pack operating conditions in real-time. One of the most critical aspects of BMS systems is estimating the battery's state of charge (SOC). However, in the case of a lithium-ion battery, it is not easy to provide an accurate estimate of the state of charge. In the present paper we propose a mechanism based on an extended kalman filter (EKF) to improve the state-of-charge estimation accuracy on lithium-ion cells. The paper covers the cell modeling and the system parameters identification requirements, the experimental tests, and results analysis. We first established a mathematical model representing the dynamics of a cell. We adopted a model that comprehends terms that describe the dynamic parameters like SOC, open-circuit voltage, transfer resistance, ohmic loss, diffusion capacitance, and resistance. Then, we performed the appropriate battery discharge tests to identify the parameters of the model. Finally, the EKF filter applied to the cell test data has shown high precision in SOC estimation, even in a noisy system.


Measurement ◽  
2009 ◽  
Vol 42 (8) ◽  
pp. 1131-1138 ◽  
Author(s):  
V. Pop ◽  
H.J. Bergveld ◽  
P.H.L. Notten ◽  
J.H.G. Op het Veld ◽  
P.P.L. Regtien

2014 ◽  
Vol 63 (4) ◽  
pp. 1614-1621 ◽  
Author(s):  
Jun Xu ◽  
Chunting Chris Mi ◽  
Binggang Cao ◽  
Junjun Deng ◽  
Zheng Chen ◽  
...  

1999 ◽  
Vol 575 ◽  
Author(s):  
E. Peter Roth ◽  
G. Nagasubramanian

ABSTRACTThermal instabilities were identified in SONY-type lithium-ion cells and correlated with interactions of cell constituents and reaction products. Three temperature regions of interaction were identified and associated with the state of charge (degree of Li intercalation) of the cell. Anodes were shown to undergo exothermic reactions as low as 100°C involving the solid electrolyte interface (SEI) layer and the LiPF6 salt in the electrolyte (EC:PC:DEC/LiPF6). These reactions could account for the thermal runaway observed in these cells beginning at 100°C. Exothermic reactions were also observed in the 200°C-300°C region between the intercalated lithium anodes, the LiPF6 salt, and the PVDF. These reactions were followed by a hightemperature reaction region, 300°C-400°C, also involving the PVDF binder and the intercalated lithium anodes. The solvent was not directly involved in these reactions but served as a moderator and transport medium. Cathode exothermic reactions with the PVDF binder were observed above 200°C and increased with the state of charge (decreasing Li content). This offers an explanation for the observed lower thermal runaway temperatures for charged cells.


2019 ◽  
Vol 3 (27) ◽  
pp. 191-208
Author(s):  
Shriram Santhanagopalan ◽  
Ralph E. White

Batteries ◽  
2018 ◽  
Vol 4 (3) ◽  
pp. 35 ◽  
Author(s):  
Peter Kurzweil ◽  
Mikhail Shamonin

Frequency-dependent capacitance C(ω) is a rapid and reliable method for the determination of the state-of-charge (SoC) of electrochemical storage devices. The state-of-the-art of SoC monitoring using impedance spectroscopy is reviewed, and complemented by original 1.5-year long-term electrical impedance measurements of several commercially available supercapacitors. It is found that the kinetics of the self-discharge of supercapacitors comprises at least two characteristic time constants in the range of days and months. The curvature of the Nyquist curve at frequencies above 10 Hz (charge transfer resistance) depends on the available electric charge as well, but it is of little use for applications. Lithium-ion batteries demonstrate a linear correlation between voltage and capacitance as long as overcharge and deep discharge are avoided.


Sign in / Sign up

Export Citation Format

Share Document