scholarly journals Degradation Reactions in SONY-Type Li-Ion Batteries

1999 ◽  
Vol 575 ◽  
Author(s):  
E. Peter Roth ◽  
G. Nagasubramanian

ABSTRACTThermal instabilities were identified in SONY-type lithium-ion cells and correlated with interactions of cell constituents and reaction products. Three temperature regions of interaction were identified and associated with the state of charge (degree of Li intercalation) of the cell. Anodes were shown to undergo exothermic reactions as low as 100°C involving the solid electrolyte interface (SEI) layer and the LiPF6 salt in the electrolyte (EC:PC:DEC/LiPF6). These reactions could account for the thermal runaway observed in these cells beginning at 100°C. Exothermic reactions were also observed in the 200°C-300°C region between the intercalated lithium anodes, the LiPF6 salt, and the PVDF. These reactions were followed by a hightemperature reaction region, 300°C-400°C, also involving the PVDF binder and the intercalated lithium anodes. The solvent was not directly involved in these reactions but served as a moderator and transport medium. Cathode exothermic reactions with the PVDF binder were observed above 200°C and increased with the state of charge (decreasing Li content). This offers an explanation for the observed lower thermal runaway temperatures for charged cells.

2021 ◽  
pp. 0734242X2110106
Author(s):  
Thomas Nigl ◽  
Tanja Bäck ◽  
Stefan Stuhlpfarrer ◽  
Roland Pomberger

The increased utilisation of lithium-ion batteries in the last years does not come without cost. Due to thermal runaway and exothermic degradation reactions, portable batteries pose enormous risks to waste management systems and infrastructure in their end-of-life phase. All over Europe, the number of waste fires caused by lithium-ion batteries are rising. The risk of a battery fire is mainly influenced by the probability and severity of a thermal runaway or exothermic degradation, which depends on the current state of charge (SOC) of the respective battery. In order to determine the distribution of the SOC which is one of the main influence factors to waste fires caused by lithium-ion batteries, 980 waste battery cells were representatively sampled, manually dismantled and analysed using a prototypic laboratory test stand. Approximately 24% of the analysed cells and batteries had a residual SOC of at least 25%, and approximately 12% had a residual SOC of at least 50%. Hence, approximately every fourth to eighth portable battery threatens to cause a waste fire when critically damaged. Furthermore, a distinct relationship between the actual cell voltage and the residual SOC was found for end-of-life portable batteries.


2020 ◽  
Vol 53 (2) ◽  
pp. 13922-13927
Author(s):  
Bikky Routh ◽  
Desham Mitra ◽  
Amit Patra ◽  
Siddhartha Mukhopadhyay

2005 ◽  
Vol 576 (1) ◽  
pp. 43-47 ◽  
Author(s):  
S. Shriram ◽  
N.G. Renganathan ◽  
M. Ganesan ◽  
M.V.T. Dhananjeyan

2021 ◽  
Vol 10 (4) ◽  
pp. 1759-1768
Author(s):  
Mouhssine Lagraoui ◽  
Ali Nejmi ◽  
Hassan Rayhane ◽  
Abderrahim Taouni

The main goal of a battery management system (BMS) is to estimate parameters descriptive of the battery pack operating conditions in real-time. One of the most critical aspects of BMS systems is estimating the battery's state of charge (SOC). However, in the case of a lithium-ion battery, it is not easy to provide an accurate estimate of the state of charge. In the present paper we propose a mechanism based on an extended kalman filter (EKF) to improve the state-of-charge estimation accuracy on lithium-ion cells. The paper covers the cell modeling and the system parameters identification requirements, the experimental tests, and results analysis. We first established a mathematical model representing the dynamics of a cell. We adopted a model that comprehends terms that describe the dynamic parameters like SOC, open-circuit voltage, transfer resistance, ohmic loss, diffusion capacitance, and resistance. Then, we performed the appropriate battery discharge tests to identify the parameters of the model. Finally, the EKF filter applied to the cell test data has shown high precision in SOC estimation, even in a noisy system.


2020 ◽  
Vol 31 ◽  
pp. 101670 ◽  
Author(s):  
Chengshan Xu ◽  
Xuning Feng ◽  
Wensheng Huang ◽  
Yongkang Duan ◽  
Tianyu Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document