Electrical start-up for diesel fuel processing in a fuel-cell-based auxiliary power unit

2016 ◽  
Vol 302 ◽  
pp. 315-323 ◽  
Author(s):  
Remzi Can Samsun ◽  
Carsten Krupp ◽  
Andreas Tschauder ◽  
Ralf Peters ◽  
Detlef Stolten
Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5909
Author(s):  
Remzi Can Samsun ◽  
Matthias Prawitz ◽  
Andreas Tschauder ◽  
Stefan Weiske ◽  
Joachim Pasel ◽  
...  

A complete fuel cell-based auxiliary power unit in the 7.5 kWe power class utilizing diesel fuel was developed in accordance with the power density and start-up targets defined by the U.S. Department of Energy. The system includes a highly-integrated fuel processor with multifunctional reactors to facilitate autothermal reforming, the water-gas shift reaction, and catalytic combustion. It was designed with the help of process analyses, on the basis of which two commercial, high-temperature PEFC stacks and balance of plant components were selected. The complete system was packaged, which resulted in a volume of 187.5 l. After achieving a stable and reproducible stack performance based on a modified break-in procedure, a maximum power of 3.3 kWe was demonstrated in a single stack. Despite the strong deviation from design points resulting from a malfunctioning stack, all system functions could be validated. By scaling-up the performance of the functioning stack to the level of two stacks, a power density of 35 We l−1 could be estimated, which is close to the 40 We l−1 target. Furthermore, the start-up time could be reduced to less than 22 min, which exceeds the 30 min target. These results may bring diesel-based fuel cell auxiliary power units a step closer to use in real applications, which is supported by the demonstrated indicators.


2017 ◽  
Vol 355 ◽  
pp. 44-52 ◽  
Author(s):  
Remzi Can Samsun ◽  
Daniel Krekel ◽  
Joachim Pasel ◽  
Matthias Prawitz ◽  
Ralf Peters ◽  
...  

2009 ◽  
Vol 129 (2) ◽  
pp. 228-229
Author(s):  
Noboru Katayama ◽  
Hideyuki Kamiyama ◽  
Yusuke Kudo ◽  
Sumio Kogoshi ◽  
Takafumi Fukada

2002 ◽  
Author(s):  
K. Keegan ◽  
M. Khaleel ◽  
L. Chick ◽  
K. Recknagle ◽  
S. Simner ◽  
...  

2020 ◽  
pp. 5-13
Author(s):  
Grigory Popov ◽  
◽  
Vasily Zubanov ◽  
Valeriy Matveev ◽  
Oleg Baturin ◽  
...  

The presented work provides a detailed description of the method developed by the authors for coordinating the working process of the main elements of the starting system for a modern gas turbine engine for a civil aviation aircraft: an auxiliary power unit (APU) and an air turbine – starter. This technique was developed in the course of solving the practical problem of selecting the existing APU and air turbine for a newly created engine. The need to develop this method is due to the lack of recommendations on the coordination of the elements of the starting system in the available literature. The method is based on combining the characteristics of the APU and the turbine, reduced to a single coordinate system. The intersection of the characteristic’s lines corresponding to the same conditions indicates the possibility of joint operation of the specified elements. The lack of intersection indicates the impossibility of joint functioning. The calculation also takes into account losses in the air supply lines to the turbine. The use of the developed method makes it possible to assess the possibility of joint operation of the APU and the air turbine in any operating mode. In addition to checking the possibility of functioning, as a result of the calculation, specific parameters of the working process at the operating point are determined, which are then used as initial data in calculating the elements of the starting system, for example, determining the parameters of the turbine, which in turn allow providing initial information for calculating the starting time or the possibility of functioning of the starting system GTE according to strength and other criteria. The algorithm for calculating the start-up time of the gas turbine engine was also developed by the authors and implemented in the form of an original computer program. Keywords: gas turbine engine start-up, GTE starting system, air turbine, methodology, joint work, auxiliary power unit, power, start-up time, characteristics matching, coordination, operational characteristics, computer program.


Sign in / Sign up

Export Citation Format

Share Document