Investigation of physico-chemical processes in lithium-ion batteries by deconvolution of electrochemical impedance spectra

2017 ◽  
Vol 361 ◽  
pp. 300-309 ◽  
Author(s):  
Balasundaram Manikandan ◽  
Vishwanathan Ramar ◽  
Christopher Yap ◽  
Palani Balaya
2013 ◽  
Vol 310 ◽  
pp. 90-94 ◽  
Author(s):  
Xiao Bing Huang ◽  
Hong Hui Chen ◽  
Huang Rong Li ◽  
Qian Peng Yang ◽  
Shi Biao Zhou ◽  
...  

Li2FeSiO4/C and Li1.97Mg0.03FeSiO4/C composites were successfully prepared by a solid-state method. Both samples were systematically investigated by X-ray diffraction(XRD), scanning electron microscopy(SEM), the charge-discharge test and electrochemical impedance spectra measurement, respectively. It was found that the Li1.97Mg0.03FeSiO4/C composite exhibited an excellent rate capability with a discharge capacity of 144mAh g-1 at 0.2C and 97mAh g-1 at 5C, and after 100 cycles at 1 C, 96% of its initial capacity was retained.


Author(s):  
Vincent Laue ◽  
Fridolin Röder ◽  
Ulrike Krewer

Abstract Electrochemical models play a significant role in today’s rapid development and enhancement of lithium-ion batteries. For instance, they are applied for design and process optimization. More recently, model and parameter identifiability are gaining interest as thorough model parameterization is key to reliable simulation results. Especially electrochemical models are often prone to unidentifiability and overfitting due to their high number of adjustable parameters. In this article, the most common electrochemical peudo-2D model of a lithium-ion battery is parameterized. A three-step procedure is applied which considers quasi-static 3-electrode measurements of the open-circuit potential, C-rate tests, and electrochemical impedance spectra. Identifiability of each step is discussed in-depth and a general guidance for future parameterizations is derived. The conducted study reveals the insufficiency of open-circuit potential and C-rate tests to fully parameterize the electrochemical model. Highly dynamic tests, e.g., impedance spectroscopy, are required to resolve the ambiguity of diffusive and electric processes under quasi-static conditions. Any parameterization of electrochemical models requires experimental data of electrode-resolved tests, as well as a combination of quasi-static and highly dynamic tests. The results of this study provide guidance for the use of electrochemical models in applied sciences and industry. Graphic abstract


Sign in / Sign up

Export Citation Format

Share Document