Electrochemical Performance of Mg-Doped Li2FeSiO4/C as Cathode Material for Lithium-Ion Batteries

2013 ◽  
Vol 310 ◽  
pp. 90-94 ◽  
Author(s):  
Xiao Bing Huang ◽  
Hong Hui Chen ◽  
Huang Rong Li ◽  
Qian Peng Yang ◽  
Shi Biao Zhou ◽  
...  

Li2FeSiO4/C and Li1.97Mg0.03FeSiO4/C composites were successfully prepared by a solid-state method. Both samples were systematically investigated by X-ray diffraction(XRD), scanning electron microscopy(SEM), the charge-discharge test and electrochemical impedance spectra measurement, respectively. It was found that the Li1.97Mg0.03FeSiO4/C composite exhibited an excellent rate capability with a discharge capacity of 144mAh g-1 at 0.2C and 97mAh g-1 at 5C, and after 100 cycles at 1 C, 96% of its initial capacity was retained.

2014 ◽  
Vol 636 ◽  
pp. 49-53
Author(s):  
Si Qi Wen ◽  
Liang Chao Gao ◽  
Jia Li Wang ◽  
Lei Zhang ◽  
Zhi Cheng Yang ◽  
...  

To improve the cycle performance of spinel LiMn2O4as the cathode of 4 V class lithium ion batteries, spinel were successfully prepared using the sol-gel method. The dependence of the physicochemical properties of the spinel LiCrxMn2-xO4(x=0,0.05,0.1,0.2,0.3,0.4) powders powder has been extensively investigated by using X-ray diffraction (XRD), scanning electron microscope (SEM), charge-discharge test and electrochemical impedance spectroscopy (EIS). The results show that as Mn is replaced by Cr, the initial capacity decreases, but the cycling performance improves due to stabilization of spinel structure. Of all, the LiCr0.2Mn1.8O4has best electrochemical performance, 107.6 mAhg-1discharge capacity, 96.1% of the retention after 50 cycles.


2014 ◽  
Vol 687-691 ◽  
pp. 4327-4330
Author(s):  
Yan Wang ◽  
Zhe Sheng Feng ◽  
Lu Lin Wang ◽  
Jin Ju Chen ◽  
Zhen Yu He

Li0.97K0.03FePO4 and Li0.97K0.03FePO4/graphene composites were synthesized by carbothermal reduction method using acetylene black as carbon source. The structure and electrochemical properties of the prepared materials were investigated with X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, galvanostatic charge and discharge and electrochemical impedance spectra tests. The results indicated that K doping improves the cyclic stability of samples, the addition of small amounts of graphene results in better electronic properties on sample. Li0.97K0.03FePO4/graphene showed discharge capacity of 158.06 and 90.55 mAh g-1 at 0.1 C and 10 C, respectively. After the 50 cycle test at different rates, the reversible discharge capacity at 0.1 C was 158.58 mAh g-1, indicating the capacity retention ratio of 100.32%.


2014 ◽  
Vol 633-634 ◽  
pp. 495-498
Author(s):  
Xiao Bing Huang ◽  
Hong Hui Chen ◽  
Shi Biao Zhou ◽  
Yuan Dao Chen ◽  
Bei Ping Liu ◽  
...  

Spinel Li4-xKxTi5O12(x=0, 0.03) were successfully synthesized by a traditional solid-state method and systematically investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and the charge-discharge test, respectively. The results demonstrated that Li3.97K0.03Ti5O12exhibited much better rate performance in comparsion with Li4Ti5O12. At 0.2 C and 10 C, it delivered a discharge capacity of 173 mAh g-1and 124 mAh g-1respectively, and after 100 cycles at 10 C, 96.1% of its initial capacity was retained.


2014 ◽  
Vol 900 ◽  
pp. 242-246 ◽  
Author(s):  
Xing Ling Lei ◽  
Hai Yan Zhang ◽  
Yi Ming Chen ◽  
Wen Guang Wang ◽  
Zi Dong Huang ◽  
...  

LiFePO4/graphene composites were prepared via a simple hydrothermal method. The as-prepared LiFePO4/graphene composites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), galvanostatic charge-discharge test, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) tests. The lithium-ion batteries using LiFePO4/graphene composites as cathode material exhibited a discharge capacity of 165 mAh/g, which was 97% of the theoretical capacity of 170 mAh/g.


2015 ◽  
Vol 1088 ◽  
pp. 327-331
Author(s):  
Fei Fei Zhao ◽  
Dao Bin Mu ◽  
Xiong Xiong Hou ◽  
Lei Wang ◽  
Yong Huan Ren ◽  
...  

AlF3 and MgF2 were applied to modify the surface of the LiNi1/3Co1/3Mn1/3O2 cathode material. The structural and electrochemical properties of the materials were studied using X-ray diffraction (XRD), scanning electron microscopy (SEM), charge–discharge tests and electrochemical impedance spectra (EIS). The results show that the 1 wt.% AlF3 and 1 wt.% MgF2 coated LiNi1/3Co1/3Mn1/3O2 (NCM333) cathode material exhibits an optimized electrochemical performance. It presents an initial capacity of 207.2mAh/g and 169.1mAh/g at 0.2C between 2.8V and 4.7V after charge-discharge 65 cycles. The rate performance is also enhanced because the coating decreases the interface charge transfer impedance.


NANO ◽  
2016 ◽  
Vol 11 (10) ◽  
pp. 1650114 ◽  
Author(s):  
Dan Li ◽  
Jianwei Li ◽  
Caiqin Han ◽  
Xinsheng Zhao ◽  
Haipeng Chu ◽  
...  

Few-layered MoS2 nanostructures were successfully synthesized by a simple hydrothermal method without the addition of any catalysts or surfactants. Their morphology, structure and photocatalytic activity were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy, electrochemical impedance spectra and UV-Vis absorption spectroscopy, respectively. These results show that the MoS2 nanostructures synthesized at 180[Formula: see text]C exhibit an optimal visible light photocatalytic activity (99%) in the degradation of Rhodamine B owing to the relatively easier adsorption of pollutants, higher visible light absorption and lower electron–hole pair recombination.


Author(s):  
Adelyna Oktavia ◽  
Kurnia Sembiring ◽  
Slamet Priyono

Hospho-material of olivine, LiMnPO4 identified as promising for cathode material generation next Lithium-ion battery and has been successfully synthesized by solid-state method with Li2Co3, 2MnO2, 2NH4H2PO4 as raw material. The influence of initial concentration of precursors at kalsinasi temperatures (400-800 ° C) flows with nitrogen. The purity and composition phase verified by x-ray diffraction analysis (XRD), scanning electron microscopy (SEM), spectroscopy, energy Dispersive x-ray Analysis (EDS), Raman spectra. General investigation shows that there is a correlation between the concentration of precursors, the temperature and the temperature of sintering kalsinasi that can be exploited to design lithium-ion next generation.


NANO ◽  
2019 ◽  
Vol 14 (01) ◽  
pp. 1950010
Author(s):  
Zhiheng Huang ◽  
Chunchuan Gu ◽  
Jiajun Wen ◽  
Langlang Zhu ◽  
Mingzhen Zhang ◽  
...  

In this paper, a new and one-pot electrodeposition method was expanded for the preparation of NiS nanoparticles-based electrochemical biosensor using metal-ion complexes as a precursor. Thioacetamide was used to control the production rate of NiS nanoparticles for the first time. The proposed electrochemical sensor was characterized by energy dispersive X-ray spectroscopy (EDX), field emission scanning electron microscope (FESEM), cyclic voltammograms (CV), and electrochemical impedance spectra (EIS). Experiment parameters were optimized. Under the optimized condition, the prepared NiS-based biosensor exhibited excellent electrocatalytic oxidation of H2O2 and glucose due to their small size. It provided fast and sensitive strategy for detecting H2O2 and glucose in the range of 1–5000 and 1–1000[Formula: see text][Formula: see text]M. The detection limit of 0.257 and 0.3[Formula: see text][Formula: see text]M was obtained for H2O2 and glucose. The mechanisms were also analyzed. The proposed biosensor exhibited excellent anti-interference and repeatability. Furthermore, it was applied in the actual sample analysis, such as human blood serum.


2010 ◽  
Vol 146-147 ◽  
pp. 1233-1237
Author(s):  
Bin Sun ◽  
Yi Feng Chen ◽  
Kai Xiong Xiang ◽  
Wen Qiang Gong ◽  
Han Chen

Li0.99Gd0.01FePO4/C composite was prepared by solid-state reaction, using particle modification with amorphous carbon from the decomposition of glucose and lattice doping with supervalent cation Gd3+. All samples were characterized by X-ray diffraction, scanning electron microscopy, multi-point Brunauer Emmett and Teller methods. The electrochemical tests show Li0.99Gd 0.01FePO4/C composite obtains the highest discharge specific capacity of 154 mAh.g-1 at C/10 rate and the best rate capability. Its specific capacity reaches 131 mAh.g-1 at 2 C rate. Its capacity loss is only 14.9 % when the rate varies from C/10 to 2 C.


Sign in / Sign up

Export Citation Format

Share Document