Data-driven modeling for river flood forecasting based on a piecewise linear ARX system identification

2020 ◽  
Vol 86 ◽  
pp. 44-56 ◽  
Author(s):  
Baya Hadid ◽  
Eric Duviella ◽  
Stéphane Lecoeuche
2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Hao Yu ◽  
Qingquan Jia ◽  
Ning Wang ◽  
Haiyan Dong

This study introduces a data-driven modeling strategy for smart grid power quality (PQ) coupling assessment based on time series pattern matching to quantify the influence of single and integrated disturbance among nodes in different pollution patterns. Periodic and random PQ patterns are constructed by using multidimensional frequency-domain decomposition for all disturbances. A multidimensional piecewise linear representation based on local extreme points is proposed to extract the patterns features of single and integrated disturbance in consideration of disturbance variation trend and severity. A feature distance of pattern (FDP) is developed to implement pattern matching on univariate PQ time series (UPQTS) and multivariate PQ time series (MPQTS) to quantify the influence of single and integrated disturbance among nodes in the pollution patterns. Case studies on a 14-bus distribution system are performed and analyzed; the accuracy and applicability of the FDP in the smart grid PQ coupling assessment are verified by comparing with other time series pattern matching methods.


2020 ◽  
Vol 28 (3) ◽  
pp. 215-227
Author(s):  
Brahim Boutkhamouine ◽  
Hélène Roux ◽  
François Pérés

Author(s):  
Hannah Lu ◽  
Cortney Weintz ◽  
Joseph Pace ◽  
Dhiraj Indana ◽  
Kevin Linka ◽  
...  

Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 949
Author(s):  
Keita Hara ◽  
Masaki Inoue

In this paper, we address the data-driven modeling of a nonlinear dynamical system while incorporating a priori information. The nonlinear system is described using the Koopman operator, which is a linear operator defined on a lifted infinite-dimensional state-space. Assuming that the L2 gain of the system is known, the data-driven finite-dimensional approximation of the operator while preserving information about the gain, namely L2 gain-preserving data-driven modeling, is formulated. Then, its computationally efficient solution method is presented. An application of the modeling method to feedback controller design is also presented. Aiming for robust stabilization using data-driven control under a poor training dataset, we address the following two modeling problems: (1) Forward modeling: the data-driven modeling is applied to the operating data of a plant system to derive the plant model; (2) Backward modeling: L2 gain-preserving data-driven modeling is applied to the same data to derive an inverse model of the plant system. Then, a feedback controller composed of the plant and inverse models is created based on internal model control, and it robustly stabilizes the plant system. A design demonstration of the data-driven controller is provided using a numerical experiment.


Sign in / Sign up

Export Citation Format

Share Document