GPU-accelerated inverse identification of radiative properties of particle suspensions in liquid by the Monte Carlo method

Author(s):  
C.Y. Ma ◽  
J.M. Zhao ◽  
L.H. Liu ◽  
L. Zhang ◽  
X.C Li ◽  
...  
1989 ◽  
Vol 111 (1) ◽  
pp. 135-140 ◽  
Author(s):  
M. Kobiyama

A modified Monte Carlo method is suggested to reduce the computing time and improve the convergence stability of iterative calculations without losing other excellent features of the conventional Monte Carlo method. In this method, two kinds of radiative bundle are used: energy correcting bundles and property correcting bundles. The energy correcting bundles are used for correcting the radiative energy difference between two successive iterative cycles, and the property correcting bundles are used for correcting the radiative properties. The number of radiative energy bundles emitted from each control element is proportional to the difference in emissive energy between two successive iterative cycles.


2019 ◽  
Vol 60 ◽  
pp. 1-20 ◽  
Author(s):  
Jasman Y.H. Chai ◽  
Basil T. Wong

In this research, we detailed how the following factors affect the scattering of light by nanofluids: (1) nanoparticle sizes, (2) volume fraction of nanoparticles, and (3) nanoparticle materials. Mie theory was used to calculate the radiative properties of the nanofluids. The radiative properties were then applied into the Radiative Transfer Equation (RTE) to solve for the transmittance and reflectance of light through the nanofluids. The RTE was solved using the Monte Carlo method. Results showed that when the size of nanoparticles and the volume fraction increase, absorption and scattering coefficients increase as well. For silver nanofluids, absorption and scattering coefficients decrease beyond nanoparticle size of about 50 nm. Transmittance of light decreased when nanoparticle sizes increased. When comparing between TiO2, Ag, and SiO2 nanofluids, Ag nanofluids exhibit the highest light absorption followed by TiO2 and SiO2.


2020 ◽  
Vol 2020 (4) ◽  
pp. 25-32
Author(s):  
Viktor Zheltov ◽  
Viktor Chembaev

The article has considered the calculation of the unified glare rating (UGR) based on the luminance spatial-angular distribution (LSAD). The method of local estimations of the Monte Carlo method is proposed as a method for modeling LSAD. On the basis of LSAD, it becomes possible to evaluate the quality of lighting by many criteria, including the generally accepted UGR. UGR allows preliminary assessment of the level of comfort for performing a visual task in a lighting system. A new method of "pixel-by-pixel" calculation of UGR based on LSAD is proposed.


Author(s):  
V.A. Mironov ◽  
S.A. Peretokin ◽  
K.V. Simonov

The article is a continuation of the software research to perform probabilistic seismic hazard analysis (PSHA) as one of the main stages in engineering seismic surveys. The article provides an overview of modern software for PSHA based on the Monte Carlo method, describes in detail the work of foreign programs OpenQuake Engine and EqHaz. A test calculation of seismic hazard was carried out to compare the functionality of domestic and foreign software.


2019 ◽  
Vol 20 (12) ◽  
pp. 1151-1157 ◽  
Author(s):  
Alla P. Toropova ◽  
Andrey A. Toropov

Prediction of physicochemical and biochemical behavior of peptides is an important and attractive task of the modern natural sciences, since these substances have a key role in life processes. The Monte Carlo technique is a possible way to solve the above task. The Monte Carlo method is a tool with different applications relative to the study of peptides: (i) analysis of the 3D configurations (conformers); (ii) establishment of quantitative structure – property / activity relationships (QSPRs/QSARs); and (iii) development of databases on the biopolymers. Current ideas related to application of the Monte Carlo technique for studying peptides and biopolymers have been discussed in this review.


1999 ◽  
Vol 72 (1) ◽  
pp. 68-72
Author(s):  
M. Yu. Al’es ◽  
A. I. Varnavskii ◽  
S. P. Kopysov

Sign in / Sign up

Export Citation Format

Share Document