scholarly journals IPRT polarized radiative transfer model intercomparison project – Three-dimensional test cases (phase B)

Author(s):  
Claudia Emde ◽  
Vasileios Barlakas ◽  
Céline Cornet ◽  
Frank Evans ◽  
Zhen Wang ◽  
...  
Author(s):  
Claudia Emde ◽  
Vasileios Barlakas ◽  
Céline Cornet ◽  
Frank Evans ◽  
Sergey Korkin ◽  
...  

2017 ◽  
Vol 10 (11) ◽  
pp. 3931-3940 ◽  
Author(s):  
Colin Goldblatt ◽  
Lucas Kavanagh ◽  
Maura Dewey

Abstract. Accurate radiative transfer calculation is fundamental to all climate modelling. For deep palaeoclimate, and increasingly terrestrial exoplanet climate science, this brings both the joy and the challenge of exotic atmospheric compositions. The challenge here is that most standard radiation codes for climate modelling have been developed for modern atmospheric conditions and may perform poorly away from these. The palaeoclimate or exoclimate modeller must either rely on these or use bespoke radiation codes, and in both cases rely on either blind faith or ad hoc testing of the code. In this paper, we describe the protocols for the Palaeoclimate and Terrestrial Exoplanet Radiative Transfer Model Intercomparison Project (PALAEOTRIP) to systematically address this. This will compare as many radiation codes used for palaeoclimate or exoplanets as possible, with the aim of identifying the ranges of far-from-modern atmospheric compositions in which the codes perform well. This paper describes the experimental protocol and invites community participation in the project through 2017–2018.


2017 ◽  
Author(s):  
Colin Goldblatt ◽  
Lucas Kavenagh

Abstract. Accurate radiative transfer calculation is fundamental to all climate modelling. For deep palaeoclimate, and increasingly terrestrial exoplanet climate science, this brings both the joy and the challenge of exotic atmospheric compositions. The challenge here is that most standard radiation codes for climate modelling have been developed for modern atmospheric conditions, and may perform poorly away from these. The palaeoclimate or exoclimate modeller must either rely on these or use bespoke radiation codes, and in both cases rely on either blind faith or ad hoc testing of the code. In this paper, we describe the protocols for the Palaeoclimate and Terrestrial Exoplanet Radiative Transfer Model Intercomparison Project (PALAEOTRIP) to systematically address this. This will compare as many radiation codes used for palaeoclimate or exoplanets as possible, with the aim to constrain the ranges of far-from-modern atmospheric compositions in which the codes perform well. This paper describes the experimental protocol and invites community participation in the project through 2017.


2021 ◽  
Author(s):  
Megan Stretton ◽  
William Morrison ◽  
Robin Hogan ◽  
Sue Grimmond

<p>The heterogenous structure of cities impacts radiative exchanges (e.g. albedo and heat storage). Numerical weather prediction (NWP) models often characterise the urban structure with an infinite street canyon – but this does not capture the three-dimensional urban form. SPARTACUS-Urban (SU) - a fast, multi-layer radiative transfer model designed for NWP - is evaluated using the explicit Discrete Anisotropic Radiative Transfer (DART) model for shortwave fluxes across several model domains – from a regular array of cubes to real cities .</p><p>SU agrees with DART (errors < 5.5% for all variables) when the SU assumptions of building distribution are fulfilled (e.g. randomly distribution). For real-world areas with pitched roofs, SU underestimates the albedo (< 10%) and shortwave transmission to the surface (< 15%), and overestimates wall-plus-roof absorption (9-27%), with errors increasing with solar zenith angle. SU should be beneficial to weather and climate models, as it allows more realistic urban form (cf. most schemes) without large increases in computational cost.</p>


2020 ◽  
Author(s):  
Yuma Sakai ◽  
Hideki Kobayashi ◽  
Tomomichi Kato

Abstract. Global terrestrial ecosystems control the atmospheric CO2 concentration through gross primary production (GPP) and ecosystem respiration processes. Chlorophyll fluorescence is one of the energy release pathways of excess incident lights in the photosynthetic process. Over the last ten years, extensive studies have been revealed that canopy scale sun-induced chlorophyll fluorescence (SIF), which potentially provides a direct pathway to link leaf level photosynthesis to global GPP, can be observed from satellites. SIF is used to infer photosynthetic capacity of plant canopy, however, it is not clear how the leaf-level SIF emission contributes to the top of canopy directional SIF. Plant canopy radiative transfer models are the useful tools to understand the causality of directional canopy SIF. One dimensional (1-D) plane parallel layer models (e.g. the Soil Canopy Observation, Photochemistry and Energy fluxes (SCOPE) model) have been widely used and are useful to understand the general mechanisms behind the temporal and seasonal variations in SIF. However, due to the lack of complexity of the actual canopy structures, three dimensional models (3-D) have a potential to delineate the realistic directional canopy SIFs. Forest Light Environmental Simulator for SIF (FLiES-SIF) version 1.0 is the 3-D Monte Carlo plant canopy radiative transfer model to understand the biological and physical mechanisms behind the SIF emission from complex forest canopies. In this model description paper, we focused on the model formulation and simulation schemes, and showed some sensitivity analysis against several major variables such as view angle and leaf area index (LAI). The simulation results show that SIF increases with LAI then saturated at LAI > 2–4 depending on the spectral wavelength. The sensitivity analysis also shows that simulated SIF radiation may decrease with LAI at higher LAI domain (LAI > 5). These phenomena are seen in certain sun and view angle conditions. This type of non-linear and non-monotonic SIF behavior to LAI is also related to spatial forest structure patterns. FLiES-SIF version 1.0 can be used to quantify the canopy SIF in various view angles including the contribution of multiple scattering which is the important component in the near infrared domain. The potential use of the model is to standardize the satellite SIF by correcting the bi-directional effect. This step will contribute to the improvement of the GPP estimation accuracy through SIF.


2019 ◽  
Vol 489 (4) ◽  
pp. 4690-4704 ◽  
Author(s):  
Jong-Ho Shinn

ABSTRACT We have revisited the target EON_10.477_41.954 in order to determine more accurately the uncertainties in the model parameters that are important for target classification (i.e. galaxies with or without substantial extraplanar dust). We performed a Markov chain Monte Carlo (MCMC) analysis for the 15 parameters of the three-dimensional radiative-transfer galaxy model we used previously for target classification. To investigate the convergence of the MCMC sampling – which is usually neglected in the literature but should not be – we monitored the integrated autocorrelation time (τint), and we achieved effective sample sizes >5650 for all the model parameters. The confidence intervals are unstable at the beginning of the iterations where the values of τint are increasing, but they become stable in later iterations where those values are almost constant. The final confidence intervals are ∼5–100 times larger than the nominal uncertainties used in our previous study (the standard deviation of three best-fitting results). Thus, those nominal uncertainties are not good proxies for the model-parameter uncertainties. Although the position of EON_10.477_41.954 in the target-classification plot (the scale height to diameter ratio of dust versus that of light source) decreases by about 20–30 per cent when compared to our previous study, its membership in the ‘high-group’ – i.e. among galaxies with substantial extraplanar dust – nevertheless remains unchanged.


Sign in / Sign up

Export Citation Format

Share Document