scholarly journals Continuum approach based on radiation distribution function for radiative heat transfer in densely packed particulate system

Author(s):  
Baokun Liu ◽  
Junming Zhao ◽  
Linhua Liu
Author(s):  
B. K. Liu ◽  
J. M. Zhao ◽  
L. H. Liu

Abstract Radiative heat transfer in particulate system has many applications in industry. Recently, the anomalous heat diffusion was reported for particulate system in near field thermal radiation heat transfer, and the existence of heat super-diffusive regimes was observed and the spread of heat can be described by Levy flight. In this work, attention is paid to investigate whether there is anomalous heat diffusion in far-field radiative heat transfer or not. Specifically, this study is focused on the radiative heat transport of a system, consisting of optically large particles, in the geometric optic range. Those particles are arranged in a linear chain surrounded by reflective walls and all particles are identical and equally spaced. The effect of the boundary type and particle surface emissivity on the heat diffusion is also investigated. The heat diffusion behavior in the far-field is studied based on Monte Carlo ray tracing method and the fractional diffusion equation in one dimension. The result indicates the existence of anomalous heat diffusion in the far-field by analyzing the asymptotic behavior of radiation distribution function (RDF). It’s shown that the distribution of RDF decays in power law and can be divided into two parts: for near the source particle, heat diffusive regime is super-diffusive (according to the analysis of fractional diffusion equation), while for far from the source particle, heat diffusive regime becomes sub-diffusive. Moreover, the kind of boundary type and particle wall emissivity have a significant influence on the heat diffusion of the far-field radiation heat transfer. This work will help the understanding of radiation heat transfer in particulate system in the far-field.


Author(s):  
M. G. Luo ◽  
J. M. Zhao ◽  
L. H. Liu

Abstract Heat transport mediated by near-field interaction in particulate system (e.g. chain of particles) is one of the research focuses in thermal transport in micro-nanoscale. Near field radiative heat transfer (NFRHT) characteristics of metallic nanoparticle chains (separation distance between neighboring particles is h) are analyzed by means of both coupled electric-magnetic dipole approximation and quadrupole approximation. Thermal conductance (G) between the central particle and other particle with different separation gaps (Δx) is calculated at both 300K and 1200K. Corrected polarizability is used to take quadrupole effect into consideration when calculating the NFRHT in extreme near field where dipole approximation ceases to be valid. Temperature distributions along several different chains of particles due to NFRHT are also predicted. Results show that, according to the asymptotic behavior of distribution of G along metallic chains similar as that observed in SiC chains, heat super-diffusion is demonstrated at both 300K and 1200K in metallic nanoparticle chains. At 300K, the contribution of quadrupole results in that thermal conductance responses to h in different way in metallic and dielectric particle chains. Temperature distribution and heat flow are the two key parameters used to characterize the heat transport in chains of particles. Ag particles in SiC chain act as barriers during the radiative heat transport process. Heat super-diffusion, as well as some other characteristics of NFRHT, observed in metallic nanoparticle chains may help for insight of heat transport in particulate system and new design of device in micro-nanoscale.


2005 ◽  
Vol 36 (6) ◽  
pp. 475-480 ◽  
Author(s):  
A. V. Stepanov ◽  
N. I. Sulzhik ◽  
V. N. Nikolaenko

Sign in / Sign up

Export Citation Format

Share Document