Study on the binding of Thioflavin T to β-sheet-rich and non-β-sheet cavities

2007 ◽  
Vol 158 (3) ◽  
pp. 358-369 ◽  
Author(s):  
Minna Groenning ◽  
Lars Olsen ◽  
Marco van de Weert ◽  
James M. Flink ◽  
Sven Frokjaer ◽  
...  
Keyword(s):  
2021 ◽  
Author(s):  
Ben Jia ◽  
Lan Jia ◽  
Jingxin Zhu

Abstract In this work, the potential application of the fluorescence dye Thioflavin-T (ThT), which can specifically bind to amyloid, as a powerful tool for monitoring secondary structure transitions of silk fibroin (SF) induced by pH was examined. Results showed that ThT emission intensities substantially increased when pH decreased from 6.8 to 4.8. This increase may be due to conformational transitions from random coil to β-sheet. The morphology and secondary structure of SF were also investigated via TEM, AFM and circular dichroism spectroscopy. The information obtained herein can be utilized not only for the development of convenient and efficient noninvasive method for monitoring the assembly behavior of SF in aqueous solution but also for in vitro fluorescence imaging.


2009 ◽  
Vol 394 (4) ◽  
pp. 627-633 ◽  
Author(s):  
Chun Wu ◽  
Matthew Biancalana ◽  
Shohei Koide ◽  
Joan-Emma Shea

2020 ◽  
Vol 124 (51) ◽  
pp. 11625-11633
Author(s):  
Ferenc Zsila ◽  
Sergey A. Samsonov ◽  
Martyna Maszota-Zieleniak
Keyword(s):  

PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0250277
Author(s):  
Kosuke Magami ◽  
Naomi Hachiya ◽  
Kazuo Morikawa ◽  
Noriko Fujii ◽  
Takumi Takata

Post-translational modifications are often detected in age-related diseases associated with protein misfolding such as cataracts from aged lenses. One of the major post-translational modifications is the isomerization of aspartate residues (L-isoAsp), which could be non-enzymatically and spontaneously occurring in proteins, resulting in various effects on the structure and function of proteins including short peptides. We have reported that the structure and function of an αA66–80 peptide, corresponding to the 66–80 (66SDRDKFVIFLDVKHF80) fragment of human lens αA-crystallin, was dramatically altered by the isomerization of aspartate residue (Asp) at position 76. In the current study, we observed amyloid-like fibrils of L-isoAsp containing αA66–80 using electron microscopy. The contribution of each amino acid for the peptide structure was further evaluated by circular dichroism (CD), bis-ANS, and thioflavin T fluorescence using 14 alanine substituents of αA66–80, including L-isoAsp at position 76. CD of 14 alanine substituents demonstrated random coiled structures except for the substituents of positively charged residues. Bis-ANS fluorescence of peptide with substitution of hydrophobic residue with alanine revealed decreased hydrophobicity of the peptide. Thioflavin T fluorescence also showed that the hydrophobicity around Asp76 of the peptide is important for the formation of amyloid-like fibrils. One of the substitutes, H79A (SDRDKFVIFL(L-isoD)VKAF) demonstrated an exact β-sheet structure in CD and highly increased Thioflavin T fluorescence. This phenomenon was inhibited by the addition of protein-L-isoaspartate O-methyltransferase (PIMT), which is an enzyme that changes L-isoAsp into Asp. These interactions were observed even after the formation of amyloid-like fibrils. Thus, isomerization of Asp in peptide is key to form fibrils of αA-crystallin-derived peptide, and L-isoAsp on fibrils can be a candidate for disassembling amyloid-like fibrils of αA-crystallin-derived peptides.


2020 ◽  
Vol 01 ◽  
Author(s):  
Zheng Zuo ◽  
Zongyun Chen ◽  
Zhijian Cao ◽  
Wenxin Li ◽  
Yingliang Wu

: The scorpion toxins are the largest potassium channel-blocking peptide family. The understanding of toxin binding interfaces is usually restricted by two classical binding interfaces: one is the toxin α-helix motif, the other is the antiparallel β-sheet motif. In this review, such traditional knowledge was updated by another two different binding interfaces: one is BmKTX toxin using the turn motif between the α-helix and antiparallel β-sheet domains as the binding interface, the other is Ts toxin using turn motif between the β-sheet in the N-terminal and α-helix domains as the binding interface. Their interaction analysis indicated that the scarce negatively charged residues in the scorpion toxins played a critical role in orientating the toxin binding interface. In view of the toxin negatively charged amino acids as “binding interface regulator”, the law of scorpion toxin-potassium channel interaction was proposed, that is, the polymorphism of negatively charged residue distribution determines the diversity of toxin binding interfaces. Such law was used to develop scorpion toxin-potassium channel recognition control technique. According to this technique, three Kv1.3 channel-targeted peptides, using BmKTX as the template, were designed with the distinct binding interfaces from that of BmKTX through modulating the distribution of toxin negatively charged residues. In view of the potassium channel as the common targets of different animal toxins, the proposed law was also shown to helpfully orientate the binding interfaces of other animal toxins. Clearly, the toxin-potassium channel interaction law would strongly accelerate the research and development of different potassium channelblocking animal toxins in the future.


Sign in / Sign up

Export Citation Format

Share Document